scholarly journals Predictive Formal Analysis of Resilience in Cyber-Physical Systems

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 33741-33758 ◽  
Author(s):  
Sebti Mouelhi ◽  
Mohamed-Emine Laarouchi ◽  
Daniela Cancila ◽  
Hakima Chaouchi
Author(s):  
Jaehun Lee ◽  
Sharon Kim ◽  
Kyungmin Bae ◽  
Peter Csaba Ölveczky

AbstractWe present the $$\textsc {Hybrid}\textsc {Synch}\textsc {AADL}$$ H Y B R I D S Y N C H AADL modeling language and formal analysis tool for virtually synchronous cyber-physical systems with complex control programs, continuous behaviors, bounded clock skews, network delays, and execution times. We leverage the Hybrid PALS equivalence, so that it is sufficient to model and verify the simpler underlying synchronous designs. We define the $$\textsc {Hybrid}\textsc {Synch}\textsc {AADL}$$ H Y B R I D S Y N C H AADL language as a sublanguage of the avionics modeling standard AADL for modeling such designs in AADL, and demonstrate the effectiveness of $$\textsc {Hybrid}\textsc {Synch}\textsc {AADL}$$ H Y B R I D S Y N C H AADL on a number of applications.


Author(s):  
Okolie S.O. ◽  
Kuyoro S.O. ◽  
Ohwo O. B

Cyber-Physical Systems (CPS) will revolutionize how humans relate with the physical world around us. Many grand challenges await the economically vital domains of transportation, health-care, manufacturing, agriculture, energy, defence, aerospace and buildings. Exploration of these potentialities around space and time would create applications which would affect societal and economic benefit. This paper looks into the concept of emerging Cyber-Physical system, applications and security issues in sustaining development in various economic sectors; outlining a set of strategic Research and Development opportunities that should be accosted, so as to allow upgraded CPS to attain their potential and provide a wide range of societal advantages in the future.


Author(s):  
Curtis G. Northcutt

The recent proliferation of embedded cyber components in modern physical systems [1] has generated a variety of new security risks which threaten not only cyberspace, but our physical environment as well. Whereas earlier security threats resided primarily in cyberspace, the increasing marriage of digital technology with mechanical systems in cyber-physical systems (CPS), suggests the need for more advanced generalized CPS security measures. To address this problem, in this paper we consider the first step toward an improved security model: detecting the security attack. Using logical truth tables, we have developed a generalized algorithm for intrusion detection in CPS for systems which can be defined over discrete set of valued states. Additionally, a robustness algorithm is given which determines the level of security of a discrete-valued CPS against varying combinations of multiple signal alterations. These algorithms, when coupled with encryption keys which disallow multiple signal alteration, provide for a generalized security methodology for both cyber-security and cyber-physical systems.


Sign in / Sign up

Export Citation Format

Share Document