Enzymatic determination of biogenic amines with transglutaminase

Talanta ◽  
2006 ◽  
Vol 68 (3) ◽  
pp. 1040-1045 ◽  
Author(s):  
K. Punakivi ◽  
M. Smolander ◽  
M.-L. Niku-Paavola ◽  
J. Mattinen ◽  
J. Buchert
Catalysts ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 579 ◽  
Author(s):  
Tianxiang Yang ◽  
Young-Jong Kim ◽  
Jetendra Kumar Roy ◽  
Young-Wan Kim

In order to determine total biogenic amines in fermented foods, the combined cross-linked enzyme aggregates of a monoamine oxidase and a putrescine oxidase (combi-CLEAs) and the cross-linked enzyme aggregates (CLEAs) of the fused enzyme of two amine oxidases (MonoAmine Putrescien Oxidase, MAPO) were prepared. The effects of various parameters were examined to optimize the CLEAs formation. Biochemical characterization and stability of free and the CLEAs enzymes were performed. Through optimization of the CLEAs formation condition, the combi-CLEAs and the CLEAs-MAPO were prepared with 82% and 78% of residual activities relative to the activities of the subjected enzymes were in a preparative scale. The optimal pH for tyramine-activities of the CLEAs enzymes were shifted to relatively basic pH, leading to synchronization of the optimal performances of combi-CLEAs over pH for tyramine and putrescine. In addition, thermostability of the CLEAs enzymes were improved with almost double half-lives at 65 °C in comparison to the free enzymes. The catalytic efficiencies of combi-CLEAs for tyramine, histamine and putrescine were reduced by 41%, 56%, and 31%, respectively, and the inhibition potency by the substrate was reduced by two-fold in comparison of the mixed free enzymes. In conclusion, combi-CLEAs are a promising catalyst with the improved stability and the same optimum pH for dual activities in enzymatic determination of biogenic amines in foods.


1963 ◽  
Vol 41 (5) ◽  
pp. 265-268 ◽  
Author(s):  
Thomas J Cook ◽  
Allan L Lorincz ◽  
Alan R Spector

1983 ◽  
Vol 29 (8) ◽  
pp. 1513-1517 ◽  
Author(s):  
M W McGowan ◽  
J D Artiss ◽  
B Zak

Abstract A procedure for the enzymatic determination of lecithin and sphingomyelin in aqueous solution is described. The phospholipids are first dissolved in chloroform:methanol (2:1 by vol), the solvent is evaporated, and the residue is redissolved in an aqueous zwitterionic detergent solution. The enzymatic reaction sequences of both assays involve hydrolysis of the phospholipids to produce choline, which is then oxidized to betaine, thus generating hydrogen peroxide. The hydrogen peroxide is subsequently utilized in the enzymatic coupling of 4-aminoantipyrine and sodium 2-hydroxy-3,5-dichlorobenzenesulfonate, an intensely red color being formed. The presence of a non-reacting phospholipid enhances the hydrolysis of the reacting phospholipid. Thus we added lecithin to the sphingomyelin standards and sphingomyelin to the lecithin standards. This precise procedure may be applicable to determination of lecithin and sphingomyelin in amniotic fluid.


2019 ◽  
Vol 11 (30) ◽  
pp. 3866-3873 ◽  
Author(s):  
R. Karthikeyan ◽  
D. James Nelson ◽  
S. Abraham John

Selective and sensitive determination of one of the purine nucleotides, inosine (INO) using a low cost carbon dot (CD) modified glassy carbon (GC) electrode in 0.2 M phosphate buffer solution (pH 7.2) was demonstrated in this paper.


2021 ◽  
pp. 138134
Author(s):  
Renato L. Gil ◽  
Célia G. Amorim ◽  
Maria C.B.S.M. Montenegro ◽  
Alberto N. Araújo

2021 ◽  
Vol 169 ◽  
pp. 107960
Author(s):  
Luca Lavagna ◽  
Maria Laura Tummino ◽  
Giuliana Magnacca ◽  
Ingrid Corazzari ◽  
Enzo Laurenti

Sign in / Sign up

Export Citation Format

Share Document