A high precision, fast response, and low power consumption in situ optical fiber chemical pCO2 sensor

Talanta ◽  
2008 ◽  
Vol 76 (2) ◽  
pp. 353-359 ◽  
Author(s):  
Z LU ◽  
M DAI ◽  
K XU ◽  
J CHEN ◽  
Y LIAO
2012 ◽  
Vol 588-589 ◽  
pp. 968-973 ◽  
Author(s):  
Tao Zhang ◽  
Shu Ming Ye ◽  
Ji Yu Han ◽  
Jun Feng Liu

As a major indicator in marine life research and geochemistry, the in-situ monitoring of dissolved oxygen has become increasingly important in the assessment of marine ecosystem. It has been proved that fluorescence quenching may result in shorter fluorescence lifetime. Based on it, this paper proposes an in-situ dissolved oxygen monitoring system of high precision and low power consumption applicable to long-term monitoring of complex marine environment. Using phase detecting method, an AC analog amplification channel on Precision photoelectric detection, and used digital phase detection method and three order integral average method to detect the phase offset. The ultralow-power microcontroller was used to control system. The experiments results show that the system has high stability, high precision(0.02mg/L), quick response time(≤40s), low power consumption(peak current ≤10mA), strong anti interference ability.


2020 ◽  
Vol 236 ◽  
pp. 116064 ◽  
Author(s):  
Fajr I.M. Ali ◽  
Saleh T. Mahmoud ◽  
Falah Awwad ◽  
Yaser E. Greish ◽  
Ayah F.S. Abu-Hani

Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1898 ◽  
Author(s):  
Yue Cao ◽  
Daming Zhang ◽  
Yue Yang ◽  
Baizhu Lin ◽  
Jiawen Lv ◽  
...  

This article demonstrates a dispersed-monolayer graphene-doped polymer/silica hybrid Mach–Zehnder interferometer (MZI) thermal optical switch with low-power consumption and fast response. The polymer/silica hybrid MZI structure reduces the power consumption of the device as a result of the large thermal optical coefficient of the polymer material. To further decrease the response time of the thermal optical switch device, a polymethyl methacrylate, doped with monolayer graphene as a cladding material, has been synthesized. Our study theoretically analyzed the thermal conductivity of composites using the Lewis–Nielsen model. The predicted thermal conductivity of the composites increased by 133.16% at a graphene volume fraction of 0.263 vol %, due to the large thermal conductivity of graphene. Measurements taken of the fabricated thermal optical switch exhibited a power consumption of 7.68 mW, a rise time of 40 μs, and a fall time of 80 μs at a wavelength of 1550 nm.


2014 ◽  
Vol 513-517 ◽  
pp. 3513-3517
Author(s):  
Rui Xue Wang ◽  
Na Zhang ◽  
Le Nian Xu

A novel mine-used water-pressure sensor is presented in this paper, the configuration, working principle and design of main circuits are introduced in detail. Using pressure sensor, high precision 24 bits A/D converter AD7714 and low power consumption MCU P89LPC932 to complete the water-pressure measurement, and transferred the measuring results to upper computer through M-BUS, realized the stability measurement of high precision and low power consumption.


2021 ◽  
Vol 105 ◽  
pp. 3-7
Author(s):  
De Sheng Liu ◽  
Jiang Wu ◽  
Zhi Ming Wang

Ethanol sensor has been widely used in our daily life and industrial production, such as drunk driving test, food fermentation monitoring, and industrial gas leakage monitoring. With the advent of the Internet of Things (IoT) era, ethanol sensors will develop towards miniaturization and low-power consumption in the near future. However, traditional ethanol sensors with large volumes and high-power consumption are difficult to meet these requirements. Therefore, it is urgent to study ethanol gas sensors based on new materials and new structures. Here, we demonstrated a flexible ethanol sensor based on an ion gel-coated graphene field-effect transistor (IGFET). The device has a small graphene channel size with a width of 300 μm and a length of 200 μm. The device showed a low operating voltage of less than |±1| V. When the device was put into an ethanol gas condition, the Dirac point voltage of the IGFET showed a negative shift, which means an n-type doping effect to the graphene channel. Furthermore, the sensor showed a normalized current change of-11% against an ethanol gas concentration of 78.51 g/L at a constant drain-source voltage of 0.1 V. In addition, the device exhibited a fast response time of ~10 s and a recovery time of ~18 s. Moreover, the detectable range of the device was found to as wide as 19.76-785.1 g/L. Based on the above results, the flexible IGFET-based ethanol sensor with small size and low-power consumption has great potential to be used in the industrial production of the IoT era.


2014 ◽  
Vol 3 (5-6) ◽  
Author(s):  
Tetsuya Kawanishi

AbstractThis paper describes wired and wireless seamless networks consisting of radiowave and optical fiber links. Digital coherent technology developed for high-speed optical fiber transmission can mitigate signal deformation in radiowave links in the air as well as in optical fibers. Radio-over-fiber (RoF) technique, which transmits radio waveforms on intensity envelops of optical signals, can provide direct waveform transfer between optical and radio signals by using optical-to-electric or electric-to-optical conversion devices. Combination of RoF in millimeter-wave bands and digital coherent with high-performance digital signal processing (DSP) can provide wired and wireless seamless links where bit rate of wireless links would be close to 100 Gb/s. Millimeter-wave transmission distance would be shorter than a few kilometers due to large atmospheric attenuation, so that many moderate distance wireless links, which are seamlessly connected to optical fiber networks should be required to provide high-speed mobile-capable networks. In such systems, reduction of power consumption at media converters connecting wired and wireless links would be very important to pursue both low-power consumption and large capacity.


Sign in / Sign up

Export Citation Format

Share Document