Three–level simultaneous component analysis for analyzing the near–infrared spectra of aqueous solutions under multiple perturbations

Talanta ◽  
2020 ◽  
Vol 217 ◽  
pp. 121036 ◽  
Author(s):  
Li Han ◽  
Xiaoyu Cui ◽  
Wensheng Cai ◽  
Xueguang Shao
1971 ◽  
Vol 49 (12) ◽  
pp. 2008-2013 ◽  
Author(s):  
C. Jolicoeur ◽  
Nguyen Dinh The ◽  
A. Cabana

The near-infrared spectrum of water at various temperatures and in aqueous solutions of Bu4NBr, [Formula: see text], and [Formula: see text] is studied in the region 0.8–1.2 µ. The spectra are recorded differentially with respect to water by varying the cell lengths as to take into account density changes or the volume occupied by the solutes. A simple analysis of these spectra illustrates the qualitative similarity between the effects of the Bu4N+ ion and that of a temperature decrement on the spectrum of water. On the other hand striking differences are observed in the differential spectra obtained with Bu4NBr and the phenyl substituted: salts. Further differences are exhibited in the relative solute-solvent interactions of [Formula: see text] and [Formula: see text].


2019 ◽  
Vol 31 (1) ◽  
pp. 179
Author(s):  
M. Santos-Rivera ◽  
L. Johnson-Ulrich ◽  
A. Graham ◽  
E. Willis ◽  
A. J. Kouba ◽  
...  

Feces from captive and wild carnivores can yield valuable information about an individuals’ physiological and reproductive status, diet, and ecology. Near infrared spectroscopy (NIRS) is a rapid, noninvasive, cost-efficient technique widely used in the agricultural, pharmaceutical, and chemical industries that has gained traction in diagnostic and ecological field applications for herbivore species, such as wild deer, antelope, and giant panda. The aim of this study was to test the transferability of NIRS to measuring reproductive status in feces from 2 endangered carnivore species, the Snow (Panthera uncia) and Amur (Panthera pardus orientalis) leopards. Fecal near infrared spectra analysed with multivariate statistics were used to generate prediction models for estrone-3-glucuronide (E1G) and progesterone (P4). In the E1G NIRS model, fecal samples (n=93) were obtained from 5 female leopards (3 Amur, 2 Snow) at 5 different zoo facilities, whereas for the P4 NIRS model fecal samples (n=51) from only 1 pregnant Amur leopard was available. The hormones were extracted with methanol and quantified by enzyme-linked immunosorbent assays (C. Munroe), where the sample range for E1G was 0.20-2.17 μg/g and the range for P4 was 0.06-61.89 μg/g. The near infrared spectra (350-2500nm) were acquired with an ASD FieldSpec®3 portable spectrometer (Malvern Panalytical, Malvern, UK), and the chemometric analysis was realised using the Unscrambler® X v.10.4 (CAMO Software AS, Oslo, Norway). Hormone reference values were log transformed before chemometric analysis to account for the heterogeneity of variance. Spectral pretreatment of standard normal variate was applied to the truncated wavelength range 700-240 0nm in order to remove interference from the visible region (350-700nm) due to individual diets that can confer colour variants that alter spectral signatures. Initial principal component analysis for the E1G and P4 datasets models showed >95% of the variation was explained by 4 factors, with no separation of principal component analysis scores between species or reproductive status. Quantitative prediction models using partial least-squares regression on selected wavelength ranges yielded a coefficient of determination for E1G and P4 of 0.10-0.04 and 0.35-0.19 for calibrations and validations, respectively. These near infrared models require further mathematical processing and consideration of sample variation due to diet complexity in carnivores in order to accurately assess hormone levels and monitor reproductive cycles in these species. This work was supported by USDA-ARS Biophotonics Initiative grant #58-6402-3-018.


Sign in / Sign up

Export Citation Format

Share Document