In vivo assessing colitis severity by topical administration of fluorescent probe against neutrophils

Talanta ◽  
2021 ◽  
pp. 122519
Author(s):  
Yi Li ◽  
Chang Li ◽  
Yuanbiao Tu ◽  
Ji Tao ◽  
Peifei Liu ◽  
...  
2021 ◽  
Vol 9 (7) ◽  
pp. 1486
Author(s):  
Marcela Espinoza-Monje ◽  
Jorge Campos ◽  
Eduardo Alvarez Villamil ◽  
Alonso Jerez ◽  
Stefania Dentice Maidana ◽  
...  

Previously, we isolated lactic acid bacteria from the slime of the garden snail Helix aspersa Müller and selected Weissella viridescens UCO-SMC3 because of its ability to inhibit in vitro the growth of the skin-associated pathogen Cutibacterium acnes. The present study aimed to characterize the antimicrobial and immunomodulatory properties of W. viridescens UCO-SMC3 and to demonstrate its beneficial effect in the treatment of acne vulgaris. Our in vitro studies showed that the UCO-SMC3 strain resists adverse gastrointestinal conditions, inhibits the growth of clinical isolates of C. acnes, and reduces the adhesion of the pathogen to keratinocytes. Furthermore, in vivo studies in a mice model of C. acnes infection demonstrated that W. viridescens UCO-SMC3 beneficially modulates the immune response against the skin pathogen. Both the oral and topical administration of the UCO-SCM3 strain was capable of reducing the replication of C. acnes in skin lesions and beneficially modulating the inflammatory response. Of note, orally administered W. viridescens UCO-SMC3 induced more remarkable changes in the immune response to C. acnes than the topical treatment. However, the topical administration of W. viridescens UCO-SMC3 was more efficient than the oral treatment to reduce pathogen bacterial loads in the skin, and effects probably related to its ability to inhibit and antagonize the adhesion of C. acnes. Furthermore, a pilot study in acne volunteers demonstrated the capacity of a facial cream containing the UCO-SMC3 strain to reduce acne lesions. The results presented here encourage further mechanistic and clinical investigations to characterize W. viridescens UCO-SMC3 as a probiotic for acne vulgaris treatment.


2017 ◽  
Vol 28 (5) ◽  
pp. 2969-2977
Author(s):  
K. S. Uma Suganya ◽  
K. Govindaraju ◽  
C. Veena Vani ◽  
R. Kirubagaran ◽  
T. Ashok Kumar ◽  
...  

Author(s):  
Yu-Xu Tu ◽  
Vijay Natarajan ◽  
Han-Xiang Ko ◽  
Yuan-Pin Lo ◽  
Velmathi Sivan ◽  
...  
Keyword(s):  

RSC Advances ◽  
2015 ◽  
Vol 5 (104) ◽  
pp. 85957-85963 ◽  
Author(s):  
Peng Wang ◽  
Ke Wang ◽  
Dan Chen ◽  
Yibo Mao ◽  
Yueqing Gu

A novel NIR fluorescent probe (DCM-B2) based on dicyanomethylene-4H-pyran was synthesized for the detection of H2O2.


2013 ◽  
Vol 4 (3) ◽  
pp. 1079 ◽  
Author(s):  
Kehua Xu ◽  
Mingming Qiang ◽  
Wen Gao ◽  
Ruixian Su ◽  
Na Li ◽  
...  

2017 ◽  
Vol 47 (8) ◽  
pp. 994-999
Author(s):  
Xiaohua Li ◽  
Xinyuan He ◽  
Wen Shi ◽  
Haolin Zhang ◽  
Huimin Ma

2020 ◽  
Author(s):  
Daisuke Ito ◽  
Hiroyasu Ito ◽  
Takayasu Ideta ◽  
Ayumu Kanbe ◽  
Soranobu Ninomiya ◽  
...  

Abstract Background The skin wound healing process is regulated by various cytokines, chemokines, and growth factors. Recent reports have demonstrated that spermine/spermidine (SPD) promote wound healing through urokinase-type plasminogen activator (uPA)/uPA receptor (uPAR) signaling in vitro. Here, we investigated whether the systemic and topical administration of SPD would accelerate the skin wound-repair process in vivo.Methods A skin wound repair model was established using C57BL/6 J mice. SPD was mixed with white petrolatum for topical administration. For systemic administration, SPD mixed with drinking water was orally administered. Changes in wound size over time were calculated using digital photography.Results Systemic and topical SPD treatment significantly accelerated skin wound healing. The administration of SPD promoted the uPA/uPAR pathway in wound sites. Moreover, topical treatment with SPD enhanced the expression of IL-6 and TNF-α in wound sites. Scratch and cell proliferation assays revealed that SPD administration accelerated scratch wound closure and cell proliferation in vitro.Conclusion These results indicate that treatment with SPD promotes skin wound healing through activation of the uPA/uPAR pathway and induction of the inflammatory response in wound sites. The administration of SPD might contribute to new effective treatments to accelerate skin wound healing.


Sign in / Sign up

Export Citation Format

Share Document