Post-Neogene right-lateral strike–slip tectonics at the north-western edge of the Lut Block (Kuh-e–Sarhangi Fault), Central Iran

2013 ◽  
Vol 589 ◽  
pp. 220-233 ◽  
Author(s):  
Reza Nozaem ◽  
Mohammad Mohajjel ◽  
Federico Rossetti ◽  
Marta Della Seta ◽  
Gianluca Vignaroli ◽  
...  
2008 ◽  
Vol 179 (2) ◽  
pp. 209-223 ◽  
Author(s):  
Louis Andreani ◽  
Xavier Le Pichon ◽  
Claude Rangin ◽  
Juventino Martínez-Reyes

Abstract Numerous studies, mainly based on structural and paleomagnetic data, consider southern Mexico as a crustal block (southern Mexico block, SMB) uncoupled from the North American plate with a southeast motion with respect to North America, accommodated by extension through the central Trans-Mexican volcanic belt (TMVB). On the other hand, the accommodation of this motion on the southeastward boundary, especially at the Cocos–Caribbean–North American triple junction, is still debated. The boundary between the SMB and the North American plate is constituted by three connected zones of deformation: (1) left-lateral transtension across the central TMVB, (2) left-lateral strike-slip faulting along the eastern TMVB and Veracruz area and (3) reverse and left-lateral strike-slip faulting in the Chiapas area. We show that these three active deformation zones accommodate a counterclockwise rotation of the SMB with respect to the North American plate. We specially discuss the Quaternary motion of the SMB with respect to the surrounding plates near the Cocos–Caribbean–North American triple junction. The model we propose predicts a Quaternary counterclockwise rotation of 0.45°/Ma with a pole located at 24.2°N and 91.8°W. Finally we discuss the geodynamic implications of this counterclockwise rotation. The southern Mexico block motion is generally assumed to be the result of slip partitioning at the trench. However the obliquity of the subduction is too small to explain slip partitioning. The motion could be facilitated by the high thermal gradient and gravitational collapse that affects central Mexico and/or by partial coupling with the eastward motion of the Caribbean plate.


Author(s):  
Fred F. Pollitz ◽  
William C. Hammond ◽  
Charles W. Wicks

Abstract The 2020 M 6.5 Stanley, Idaho, earthquake produced rupture in the north of the active Sawtooth fault in the northern basin and range at depth, without any observable surface rupture. Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR) data yield several millimeters of static offsets out to ∼100  km from the rupture and up to ∼0.1  m of near-field crustal deformation. We combine the GPS and InSAR data with long-period regional seismic waveforms to derive models of kinematic slip and afterslip. We find that the coseismic rupture is complex, likely involving up to 2 m combined left-lateral strike slip and normal slip on a previously unidentified ∼south-southeast-striking fault. This slip is predominantly left-lateral strike slip, different from the dominant east-northeast–west-northwest normal faulting of the region. At least one ∼northeast-trending fault, likely associated with the Trans-Challis fault system, is inferred to have accommodated a few decimeters of right-lateral afterslip, consistent with vigorous aftershock activity at depth along northeast-trending lineations.


1974 ◽  
Vol 64 (4) ◽  
pp. 1005-1016
Author(s):  
C. J. Langer ◽  
M. G. Hopper ◽  
S. T. Algermissen ◽  
J. W. Dewey

abstract Epicenters determined from 164 of the Managua aftershocks define two seismic zones. The primary zone, which is 15 to 20 km in length and strikes northeast along the Tiscapa-Ciudad Jardin fault system, contains 80 per cent of the aftershock locations. A subsidiary zone, northwest of Managua, suggests strain release possibly related to the north-south striking San Judas fault. Depth of foci are principally in the upper 7 km for both zones. Composite fault-plane solutions indicate a predominate left-lateral strike-slip displacement; the preferred planes for each zone agree with the strike of surface fractures or previously mapped faults.


2020 ◽  
Author(s):  
Peng Guo ◽  
Zhujun Han ◽  
Fan Gao ◽  
Chuanhua Zhu ◽  
Hailong Gai

<p>The rupture patterns of large earthquakes in transpressional systems can provide important information for understanding oblique motion and strain partitioning between tectonic blocks. The 1927 M8.0 Gulang earthquake occurred on the transpressional boundary between the Tibetan and Gobi-Alashan blocks. Combined with the results of previous studies, we find that the Lenglongling fault (LLLF) and Southern Wuwei Basin fault (SWBF) might have both ruptured during the Gulang earthquake, but they exhibited different motions. A ~120-km-long surface rupture zone formed along the LLLF, with a left-lateral strike-slip motion and a coseismic offset of ~2.4-7.5 m. Bending, bifurcation, and change of the slip sense occurs at both ends of the fault. The ~42-km-long rupture zone on the SWBF, with a coseismic vertical offset of ~0.6-2.8 m, can be divided into two segments. The eastern segment shows thrust motion, while the western shows thrust motion with a left-lateral strike-slip component. Thus, the Gulang earthquake may be a multifault rupture event where strike-slip and thrust faults ruptured simultaneously. Analysis of deep and shallow structures and three-dimensional finite-element modeling reveal that the north-dipping LLLF and the SWBF may converge downward to a low-angle decollement. This pattern of deformation partitioning is similar to some other earthquakes where oblique block convergence is partitioned into strike-slip motion on steeply dipping faults and vertical motion on gently dipping faults.</p>


1969 ◽  
Vol 23 ◽  
pp. 69-72
Author(s):  
Thorkild M. Rasmussen ◽  
Peter R. Dawes

2010, the year under review, marks the centennial of perhaps the most controversial structure in the Arctic: the Wegener Fault, the 1000-km long fracture that is supposed to underlie Nares Strait and define the north-western margin of an independent Greenland plate (Fig. 1). The seaway between Greenland and Ellesmere Island, Canada, was branded a megashear by Frank Taylor who, purely on physiographic expression, postulated massive Tertiary strike-slip (Taylor 1910). This revolutionary idea fittingly found a place in Alfred Wegener’s theory of continental drift and thereafter in plate-tectonic theory with Greenland drifting hundreds of kilometres from North America along what Tuzo Wilson subsequently dubbed the ‘Wegener Fault’ (Wilson 1963).


2008 ◽  
Vol 179 (2) ◽  
pp. 195-208 ◽  
Author(s):  
Louis Andreani ◽  
Claude Rangin ◽  
Juventino Martínez-Reyes ◽  
Charlotte Le Roy ◽  
Mario Aranda-García ◽  
...  

Abstract Structural data combined with analysis of satellite images and seismic profiles show that a major left-lateral strike-slip fault affects the Veracruz basin and post-5 Ma volcanic rocks of the Los Tuxtlas volcanic field (LTVF). The main volcanic alignment of the LTVF is located along this fault. Additional structural data collected in the Trans-Mexican volcanic belt (areas of Xalapa, Teziutlán and Huauchinango) show that the shear zone affects Pliocene Trans-Mexican volcanic rocks. Low seismicity associated to faulted Quaternary markers such as alluvial fans, alluvial terraces and volcanoes argue for active faulting in this area. Plio-Quaternary strike-slip faulting in the Veracruz basin and in the eastern Trans-Mexican volcanic belt is important because it connects two important structural provinces: the left-lateral strike-slip faults province to the south and the left-lateral transtensive faulting that affects the central part of the Trans-Mexican volcanic belt. These three active deformation zones constitute the boundary between the southern Mexico block and the North American plate. It is generally assumed that strike-slip faulting along the Trans-Mexican and Central America volcanic arcs is the result of oblique subduction of the Cocos plate under the North American and Caribbean plates. However slip vectors along the Middle America trench are almost perpendicular to the trench. This Neogene sinistral strike-slip motion could be partially driven by the eastward motion of the Caribbean plate rather than by strain partitioning along the oblique Middle America trench subduction zone.


2021 ◽  
Author(s):  
Farzad Gholamian ◽  
Mahdi Najafi ◽  
J. Kim Welford ◽  
Abdolreza Ghods ◽  
Mohammad reza Bakhtiari

<p>The Kashan-Ardestan sedimentary basin in Central Iran was initially formed by back-arc extension due to the subduction of Neo-Tethys oceanic lithosphere beneath the Iranian Plate during Eocene time. Following rifting and the onset of the Arabian-Central Iranian continental collision in the Oligocene, the basin was infilled by a sequence of continental clastic and evaporitic sediments referred to as the Lower Red Formation. Post-rift cooling and thermal subsidence led to the development of a shallow marine environment for the accumulation of Qom Formation carbonates and shales in the late Oligocene–early Miocene. The Qom Formation is the most significant hydrocarbon target in Central Iran, containing both source and reservoir rocks. The continental collision triggered the reactivation of pre-existing normal and strike-slip fault systems. The basin was subjected to compressional tectonism during the deposition of the Miocene Upper Red Formation and overlying Plio-Quaternary sediments. This long-lasting and multi-episodic tectono-sedimentary evolution of the Kashan-Ardestan Basin has led to the formation of a complex structural style, which must be resolved before petroleum system modeling and drilling of prospects can take place.</p><p>In this study, several transverse and longitudinal 2D seismic lines were converted to depth and interpreted to define the deep-seated geometry of structures in the basin. The seismic lines were tied to the data from three exploration wells, reaching depths of ~ 4 km. In addition, ~ 15000 gravity and magnetic stations, covering the entire Kashan-Ardestan Basin, were integrated into our model.</p><p>The results of our study indicate that two major strike-slip fault systems, including the Qom-Zefreh and Ardestan faults in the south and the Gazu fault zone in the north, control the geometry and evolution of the Kashan-Ardestan Basin. In this basin, the rheological profiles of the sedimentary sequences control the folding style and deformation mechanisms. Both basement-involved and thin-skinned faults developed in the basin and formed different types of fault-related anticlines. The reactivation of pre-existing strike-slip faults has produced positive flower structures during compression. There is some evidence that the Navab Anticline in the SW developed as a forced fold, with basement involvement. In addition, several thin-skinned detachment folds are observed above the evaporites of the Lower Red Formation at the base of the sedimentary cover. The Lower Red Formation thins and pinches out toward the eastern limit of the basin, where the Qom carbonates directly overly the Eocene volcanic basement. Meanwhile, the Upper Red Formation thins toward the north and northeastern limits of the basin, and towards the crests of anticlines. These syntectonic thickness variations allow us to define the geometric evolution of the Kashan-Ardestan Basin through geologic times, allowing for the burial history of the source rock and timing of trap formation at the reservoir level to be described.</p>


Sign in / Sign up

Export Citation Format

Share Document