scholarly journals PPh3-catalyzed β-selective addition of α-fluoro β-dicarbonyl compounds to allenoates

Tetrahedron ◽  
2021 ◽  
pp. 132577
Author(s):  
Yong-Liang Liu ◽  
Xiao-Ping Wang ◽  
Jie Wei ◽  
Ya Li
2020 ◽  
Vol 64 (1) ◽  
pp. 97-110
Author(s):  
Christian Sibbersen ◽  
Mogens Johannsen

Abstract In living systems, nucleophilic amino acid residues are prone to non-enzymatic post-translational modification by electrophiles. α-Dicarbonyl compounds are a special type of electrophiles that can react irreversibly with lysine, arginine, and cysteine residues via complex mechanisms to form post-translational modifications known as advanced glycation end-products (AGEs). Glyoxal, methylglyoxal, and 3-deoxyglucosone are the major endogenous dicarbonyls, with methylglyoxal being the most well-studied. There are several routes that lead to the formation of dicarbonyl compounds, most originating from glucose and glucose metabolism, such as the non-enzymatic decomposition of glycolytic intermediates and fructosyl amines. Although dicarbonyls are removed continuously mainly via the glyoxalase system, several conditions lead to an increase in dicarbonyl concentration and thereby AGE formation. AGEs have been implicated in diabetes and aging-related diseases, and for this reason the elucidation of their structure as well as protein targets is of great interest. Though the dicarbonyls and reactive protein side chains are of relatively simple nature, the structures of the adducts as well as their mechanism of formation are not that trivial. Furthermore, detection of sites of modification can be demanding and current best practices rely on either direct mass spectrometry or various methods of enrichment based on antibodies or click chemistry followed by mass spectrometry. Future research into the structure of these adducts and protein targets of dicarbonyl compounds may improve the understanding of how the mechanisms of diabetes and aging-related physiological damage occur.


Synlett ◽  
1989 ◽  
Vol 1989 (01) ◽  
pp. 20-22 ◽  
Author(s):  
Theodor Weber ◽  
James P. Edwards ◽  
Scott E. Denmark
Keyword(s):  

2014 ◽  
Vol 11 (5) ◽  
pp. 751-756 ◽  
Author(s):  
Attila Voros ◽  
Zoltan Baan ◽  
Geza Timari ◽  
Istvan Hermecz ◽  
Peter Mizsey ◽  
...  

2005 ◽  
Vol 70 (10) ◽  
pp. 1696-1708 ◽  
Author(s):  
Magnus Besev ◽  
Christof Brehm ◽  
Alois Fürstner

A concise route to the common polyketide fragment5of crocacin A-D (1-4) is presented which has previously been converted into all members of this fungicidal and cytotoxic family of dipeptidic natural products by various means. Our synthesis features asyn-selective titanium aldol reaction controlled by a valinol-derived auxiliary, a zinc-mediated, palladium-catalyzedanti-selective addition of propargyl mesylate10to the chiral aldehyde9, as well as a comparison of palladium-catalyzed Stille and Suzuki cross-coupling reactions for the formation of the diene moiety of the target.


1978 ◽  
Vol 9 (18) ◽  
Author(s):  
E. BELGODERE ◽  
R. BOSSIO ◽  
V. PARRINI ◽  
R. PEPINO
Keyword(s):  

2021 ◽  
Author(s):  
Rahul Suresh ◽  
Itai Massad ◽  
Ilan Marek

The Cope rearrangement of 2,3-divinyloxiranes, a rare example of epoxide C-C bond cleavage, results in 4,5-dihydrooxepines which are amenable to hydrolysis, furnishing 1,6-dicarbonyl compounds containing two contiguous stereocenters at the 3- and 4- positions. We employ...


Sign in / Sign up

Export Citation Format

Share Document