scholarly journals Analysing patterns of forest cover change and related land uses in the Tano-Offin Forest Reserve in Ghana: implications for forest policy and land management

2021 ◽  
pp. 100105
Author(s):  
Joseph Oduro Appiah ◽  
Williams Agyemang-Duah ◽  
Augustus Kweku Sobeng ◽  
Daniel Kpienbaareh
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Williams Agyemang-Duah ◽  
Joseph Oduro Appiah ◽  
Dina Adei

Abstract Background Land use practices are noted to contribute to changes in forest landscape composition. However, whereas studies have reported the intermix of land uses and forest patches and measured the direct impacts of land uses on forest patches, little is known regarding the spatially-explicit association between the most recent forest patches and land use footprints in protected areas. In this study, we use methods from GIS, remote sensing, and statistics to model the spatial relationship between footprints of land uses and patches of forest cover by drawing on geospatial data from the Atewa range forest reserve (ARFR). Results The study finds that forest patches that are within 1 km from agricultural land use footprints (AOR = 86.625, C.I. 18.057–415.563, P = 0.000), logging sites (AOR = 55.909, C.I. 12.032–259.804, P = 0.000), mine sites (53.571, C.I. 11.287–254.255, P = 0.000), access roads (AOR = 24.169, C.I. 5.544–105.357, P = 0.000), and human settlement footprints (AOR = 7.172, C.I. 1.969–26.128, P = 0.003) are significantly more likely to be less than the mean patch area (375,431.87 m2 = 37.54 ha) of forest cover. A ROC statistic of 0.995 achieved in this study suggests a high predictive power of the proposed model. Conclusion The study findings suggest that to ensure sustainable land uses and ecological integrity, there is a need for land use policies and land management strategies that ensure responsible livelihood activities as well as further restrictions on logging and mining in the globally significant biodiversity area.


2021 ◽  
Vol 13 (11) ◽  
pp. 2131
Author(s):  
Jamon Van Den Hoek ◽  
Alexander C. Smith ◽  
Kaspar Hurni ◽  
Sumeet Saksena ◽  
Jefferson Fox

Accurate remote sensing of mountainous forest cover change is important for myriad social and ecological reasons, but is challenged by topographic and illumination conditions that can affect detection of forests. Several topographic illumination correction (TIC) approaches have been developed to mitigate these effects, but existing research has focused mostly on whether TIC improves forest cover classification accuracy and has usually found only marginal gains. However, the beneficial effects of TIC may go well beyond accuracy since TIC promises to improve detection of low illuminated forest cover and thereby normalize measurements of the amount, geographic distribution, and rate of forest cover change regardless of illumination. To assess the effects of TIC on the extent and geographic distribution of forest cover change, in addition to classification accuracy, we mapped forest cover across mountainous Nepal using a 25-year (1992–2016) gap-filled Landsat time series in two ways—with and without TIC (i.e., nonTIC)—and classified annual forest cover using a Random Forest classifier. We found that TIC modestly increased classifier accuracy and produced more conservative estimates of net forest cover change across Nepal (−5.2% from 1992–2016) TIC. TIC also resulted in a more even distribution of forest cover gain across Nepal with 3–5% more net gain and 4–6% more regenerated forest in the least illuminated regions. These results show that TIC helped to normalize forest cover change across varying illumination conditions with particular benefits for detecting mountainous forest cover gain. We encourage the use of TIC for satellite remote sensing detection of long-term mountainous forest cover change.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 959
Author(s):  
Benjamin Clark ◽  
Ruth DeFries ◽  
Jagdish Krishnaswamy

As part of its nationally determined contributions as well as national forest policy goals, India plans to boost tree cover to 33% of its land area. Land currently under other uses will require tree-plantations or reforestation to achieve this goal. This paper examines the effects of converting cropland to tree or forest cover in the Central India Highlands (CIH). The paper examines the impact of increased forest cover on groundwater infiltration and recharge, which are essential for sustainable Rabi (winter, non-monsoon) season irrigation and agricultural production. Field measurements of saturated hydraulic conductivity (Kfs) linked to hydrological modeling estimate increased forest cover impact on the CIH hydrology. Kfs tests in 118 sites demonstrate a significant land cover effect, with forest cover having a higher Kfs of 20.2 mm hr−1 than croplands (6.7mm hr−1). The spatial processes in hydrology (SPHY) model simulated forest cover from 2% to 75% and showed that each basin reacts differently, depending on the amount of agriculture under paddy. Paddy agriculture can compensate for low infiltration through increased depression storage, allowing for continuous infiltration and groundwater recharge. Expanding forest cover to 33% in the CIH would reduce groundwater recharge by 7.94 mm (−1%) when converting the average cropland and increase it by 15.38 mm (3%) if reforestation is conducted on non-paddy agriculture. Intermediate forest cover shows however shows potential for increase in net benefits.


Sign in / Sign up

Export Citation Format

Share Document