G protein-coupled receptors, an unexploited animal toxin targets: Exploration of green mamba venom for novel drug candidates active against adrenoceptors

Toxicon ◽  
2012 ◽  
Vol 59 (4) ◽  
pp. 487-496 ◽  
Author(s):  
Arhamatoulaye Maïga ◽  
Gilles Mourier ◽  
Loïc Quinton ◽  
Céline Rouget ◽  
Céline Gales ◽  
...  
2021 ◽  
Vol 13 (1) ◽  
pp. 63-90
Author(s):  
Joshua W Conner ◽  
Daniel P Poole ◽  
Manuela Jörg ◽  
Nicholas A Veldhuis

G protein-coupled receptors (GPCRs) are essential signaling proteins and tractable therapeutic targets. To develop new drug candidates, GPCR drug discovery programs require versatile, sensitive pharmacological tools for ligand binding and compound screening. With the availability of new imaging modalities and proximity-based ligand binding technologies, fluorescent ligands offer many advantages and are increasingly being used, yet labeling small molecules remains considerably more challenging relative to peptides. Focusing on recent fluorescent small molecule studies for family A GPCRs, this review addresses some of the key challenges, synthesis approaches and structure–activity relationship considerations, and discusses advantages of using high-resolution GPCR structures to inform conjugation strategies. While no single approach guarantees successful labeling without loss of affinity or selectivity, the choice of fluorophore, linker type and site of attachment have proved to be critical factors that can significantly affect their utility in drug discovery programs, and as discussed, can sometimes lead to very unexpected results.


Physiology ◽  
2008 ◽  
Vol 23 (6) ◽  
pp. 322-332 ◽  
Author(s):  
Kjell Fuxe ◽  
Daniel Marcellino ◽  
Diego Guidolin ◽  
Amina S. Woods ◽  
Luigi F. Agnati

Through an assembly of interacting GPCRs, heterodimers and high-order heteromers (termed receptor mosaics) are formed and lead to changes in the agonist recognition, signaling, and trafficking of participating receptors via allosteric mechanisms, sometimes involving the appearance of cooperativity. This field has now become a major research area, and this review deals with their physiology being integrators of receptor signaling in the CNS and their use as targets for novel drug development based on their unique pharmacology.


Author(s):  
Rinshi S. Kasai ◽  
Takahiro K. Fujiwara ◽  
Akihiro Kusumi

G-protein-coupled receptors (GPCRs) constitute the largest family of integral membrane proteins in the human genome and are responsible for various important signaling pathways for vision, olfaction, gustation, emotion, cell migration, etc. A distinct feature of the GPCR-family proteins is that many GPCRs, including the prototypical GPCR, β2-adrenergic receptor (β2AR), elicit low levels of basal constitutive signals without agonist stimulation, which function in normal development and various diseases1–3. However, how the basal signals are induced is hardly known. Another general distinctive feature of GPCRs is to form metastable homo-dimers, with lifetimes on the order of 0.1 s, even in the resting state. Here, our single-molecule-based quantification4 determined the dissociation constant of β2AR homo-dimers in the PM (1.6 ± 0.29 copies/μm2) and their lifetimes (83.2 ± 6.4 ms), and furthermore found that, in the resting state, trimeric G-proteins were recruited to both β2AR monomers and homo-dimers. Importantly, inverse agonists, which suppress the GPCR’s basal constitutive activity, specifically blocked the G-protein recruitment to GPCR homo-dimers, without affecting that to monomers. These results indicate that the G-proteins recruited to transient GPCR homo-dimers are responsible for inducing their basic constitutive signals. These results suggest novel drug development strategies to enhance or suppress GPCR homo-dimer formation.


2005 ◽  
Vol 10 (7) ◽  
pp. 730-737 ◽  
Author(s):  
Ronald I. W. Osmond ◽  
Antony Sheehan ◽  
Romana Borowicz ◽  
Emma Barnett ◽  
Georgina Harvey ◽  
...  

Discovery of novel agonists and antagonists for G protein–coupled receptors (GPCRs) relies heavily on cell-based assays because determination of functional consequences of receptor engagement is often desirable. Currently, there are several key parameters measured to achieve this, including mobilization of intracellular Ca2+ and formation of cyclic adenosine monophosphate or inositol triphosphate. However, no single assay platform is suitable for all situations, and all of the assays have limitations. The authors have developed a new high-throughput homogeneous assay platform for GPCR discovery as an alternative to current assays, which employs detection of phosphorylation of the key signaling molecule p42/44 MAP kinase (ERK 1/2). The authors show that ERK 1/2 is consistently activated in cells stimulated by Gq-coupled GPCRs and provides a new high-throughput platform for screening GPCR drug candidates. The activation of ERK 1/2 in Gq-coupled GPCR systems generates comparable pharmacological data for receptor agonist and antagonist data obtained by other GPCR activation measurement techniques.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexei Yeliseev ◽  
Malliga R. Iyer ◽  
Thomas T. Joseph ◽  
Nathan J. Coffey ◽  
Resat Cinar ◽  
...  

AbstractSignaling through integral membrane G protein-coupled receptors (GPCRs) is influenced by lipid composition of cell membranes. By using novel high affinity ligands of human cannabinoid receptor CB2, we demonstrate that cholesterol increases basal activation levels of the receptor and alters the pharmacological categorization of these ligands. Our results revealed that (2-(6-chloro-2-((2,2,3,3-tetramethylcyclopropane-1-carbonyl)imino)benzo[d]thiazol-3(2H)-yl)ethyl acetate ligand (MRI-2646) acts as a partial agonist of CB2 in membranes devoid of cholesterol and as a neutral antagonist or a partial inverse agonist in cholesterol-containing membranes. The differential effects of a specific ligand on activation of CB2 in different types of membranes may have implications for screening of drug candidates in a search of modulators of GPCR activity. MD simulation suggests that cholesterol exerts an allosteric effect on the intracellular regions of the receptor that interact with the G-protein complex thereby altering the recruitment of G protein.


Sign in / Sign up

Export Citation Format

Share Document