Evaluating the environmental impacts of analytical chemistry methods: from a critical review towards a proposal using a life cycle approach

Author(s):  
Bastien Raccary ◽  
Philippe Loubet ◽  
Christophe Peres ◽  
Guido Sonnemann
2019 ◽  
Vol 281 ◽  
pp. 03005 ◽  
Author(s):  
Nicolas Youssef ◽  
Andry Zaid Rabenantoandro ◽  
Zakaria Dakhli ◽  
Fadi Hage Chehade ◽  
Zoubeir Lafhaj

This article presents the environmental assessment of geopolymer bricks produced from clay and waste bricks. The life cycle approach is the method used in this research to qualify, identify and compare the environmental impacts of geopolymer bricks and fired bricks. The results reveal that the manufacturing process of geopolymer bricks implies for the same compressive strength of fired bricks, a reduction of CO2 emissions by up to 55% for clay-based geopolymer bricks. This research checks the environmental interests of the application of geopolymerization technology in the production of bricks.


2019 ◽  
Vol 11 (3) ◽  
pp. 856 ◽  
Author(s):  
Milena Stevanovic ◽  
Karen Allacker ◽  
Stéphane Vermeulen

With the aim of moving towards a more sustainable society, hospital buildings are challenged to decrease their environmental impact while continuing to offer affordable and qualitative medical care. The aim of this paper was to gain insight into the main drivers of the environmental impacts and costs of healthcare facilities, and to identify methodological obstacles for a quantitative assessment. More specifically, the objective was to assess the environmental and financial impacts of the general hospital Sint Maarten in Mechelen (Belgium) by using a life cycle approach. The hospital building was analyzed based on a combination of a simplified life cycle assessment and life cycle costing. The “MMG+_KULeuven” assessment tool was used for the calculation of environmental impacts and financial costs. The study revealed that the environmental impact was mainly caused by electricity use for appliances and lighting, cleaning processes, material production, and spatial heating, while building construction and electricity use caused the highest financial costs. The most relevant impact categories identified were global warming, eutrophication, acidification, human toxicity (cancer and non-cancer effects), and particulate matter. Various methodological challenges were identified, such as the adaptation of existing methods to ensure applicability to hospital buildings and the extraction of data from a Revit model.


Architecture ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 69-82
Author(s):  
Manuela Crespi

The market of Adaptive Building Skins has been growing at a slow but incremental speed, as these technologies ensure better indoor climatic comfort and more efficient energy management than traditional solutions. Nonetheless, if we acknowledge the building as a system of physical qualities oriented to overall environmental performance, the resource optimization has to be extended to considering a wider range of environmental impacts along the entire building life cycle. For this purpose, the Life Cycle Assessment (LCA) method is recognized by stakeholders as the most world-renowned standardized tool for weighting environmental impacts. The aim of this study is to scrutinize the state of the art of LCA among stakeholders enrolled in the design and manufacturing of building and adaptive facades in the Italian market. Data have been collected throughout interviews and an online survey focusing on investigating the knowledge and experience level of participants. Results not only draw the attention to develop new market models by implementing sustainable building protocols concerning adaptive technologies, but also provided a positive assessment on the usability degree of a parametric design mapping based on a systemic and life-cycle-oriented approach to achieve environmental scopes and introduce competitive factors and boost innovation in the Italian building industry.


Author(s):  
Antonio Cavallin Toscani ◽  
Laura Macchion ◽  
Anna Stoppato ◽  
Andrea Vinelli

Sign in / Sign up

Export Citation Format

Share Document