scholarly journals Environmental impacts of conventional and additive manufacturing for the production of Ti-6Al-4V knee implant: a life cycle approach

Author(s):  
Ronan Lyons ◽  
Anthony Newell ◽  
Pezhman Ghadimi ◽  
Nikolaos Papakostas
2019 ◽  
Vol 281 ◽  
pp. 03005 ◽  
Author(s):  
Nicolas Youssef ◽  
Andry Zaid Rabenantoandro ◽  
Zakaria Dakhli ◽  
Fadi Hage Chehade ◽  
Zoubeir Lafhaj

This article presents the environmental assessment of geopolymer bricks produced from clay and waste bricks. The life cycle approach is the method used in this research to qualify, identify and compare the environmental impacts of geopolymer bricks and fired bricks. The results reveal that the manufacturing process of geopolymer bricks implies for the same compressive strength of fired bricks, a reduction of CO2 emissions by up to 55% for clay-based geopolymer bricks. This research checks the environmental interests of the application of geopolymerization technology in the production of bricks.


2019 ◽  
Vol 11 (3) ◽  
pp. 856 ◽  
Author(s):  
Milena Stevanovic ◽  
Karen Allacker ◽  
Stéphane Vermeulen

With the aim of moving towards a more sustainable society, hospital buildings are challenged to decrease their environmental impact while continuing to offer affordable and qualitative medical care. The aim of this paper was to gain insight into the main drivers of the environmental impacts and costs of healthcare facilities, and to identify methodological obstacles for a quantitative assessment. More specifically, the objective was to assess the environmental and financial impacts of the general hospital Sint Maarten in Mechelen (Belgium) by using a life cycle approach. The hospital building was analyzed based on a combination of a simplified life cycle assessment and life cycle costing. The “MMG+_KULeuven” assessment tool was used for the calculation of environmental impacts and financial costs. The study revealed that the environmental impact was mainly caused by electricity use for appliances and lighting, cleaning processes, material production, and spatial heating, while building construction and electricity use caused the highest financial costs. The most relevant impact categories identified were global warming, eutrophication, acidification, human toxicity (cancer and non-cancer effects), and particulate matter. Various methodological challenges were identified, such as the adaptation of existing methods to ensure applicability to hospital buildings and the extraction of data from a Revit model.


Architecture ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 69-82
Author(s):  
Manuela Crespi

The market of Adaptive Building Skins has been growing at a slow but incremental speed, as these technologies ensure better indoor climatic comfort and more efficient energy management than traditional solutions. Nonetheless, if we acknowledge the building as a system of physical qualities oriented to overall environmental performance, the resource optimization has to be extended to considering a wider range of environmental impacts along the entire building life cycle. For this purpose, the Life Cycle Assessment (LCA) method is recognized by stakeholders as the most world-renowned standardized tool for weighting environmental impacts. The aim of this study is to scrutinize the state of the art of LCA among stakeholders enrolled in the design and manufacturing of building and adaptive facades in the Italian market. Data have been collected throughout interviews and an online survey focusing on investigating the knowledge and experience level of participants. Results not only draw the attention to develop new market models by implementing sustainable building protocols concerning adaptive technologies, but also provided a positive assessment on the usability degree of a parametric design mapping based on a systemic and life-cycle-oriented approach to achieve environmental scopes and introduce competitive factors and boost innovation in the Italian building industry.


Author(s):  
Antonio Cavallin Toscani ◽  
Laura Macchion ◽  
Anna Stoppato ◽  
Andrea Vinelli

2020 ◽  
Vol 276 ◽  
pp. 124231
Author(s):  
Abhinav Choudhury ◽  
Gary Felton ◽  
Jonathan Moyle ◽  
Stephanie Lansing

2015 ◽  
Vol 21 (1) ◽  
pp. 14-33 ◽  
Author(s):  
Jeremy Faludi ◽  
Cindy Bayley ◽  
Suraj Bhogal ◽  
Myles Iribarne

Purpose – The purpose of this study is to compare the environmental impacts of two additive manufacturing machines to a traditional computer numerical control (CNC) milling machine to determine which method is the most sustainable. Design/methodology/approach – A life-cycle assessment (LCA) was performed, comparing a Haas VF0 CNC mill to two methods of additive manufacturing: a Dimension 1200BST FDM and an Objet Connex 350 “inkjet”/“polyjet”. The LCA’s functional unit was the manufacturing of two specific parts in acrylonitrile butadiene styrene (ABS) plastic or similar polymer, as required by the machines. The scope was cradle to grave, including embodied impacts, transportation, energy used during manufacturing, energy used while idling and in standby, material used in final parts, waste material generated, cutting fluid for CNC, and disposal. Several scenarios were considered, all scored using the ReCiPe Endpoint H and IMPACT 2002+ methodologies. Findings – Results showed that the sustainability of additive manufacturing vs CNC machining depends primarily on the per cent utilization of each machine. Higher utilization both reduces idling energy use and amortizes the embodied impacts of each machine. For both three-dimensional (3D) printers, electricity use is always the dominant impact, but for CNC at maximum utilization, material waste became dominant, and cutting fluid was roughly on par with electricity use. At both high and low utilization, the fused deposition modeling (FDM) machine had the lowest ecological impacts per part. The inkjet machine sometimes performed better and sometimes worse than CNC, depending on idle time/energy and on process parameters. Research limitations/implications – The study only compared additive manufacturing in plastic, and did not include other additive manufacturing technologies, such as selective laser sintering or stereolithography. It also does not include post-processing that might bring the surface finish of FDM parts up to the quality of inkjet or CNC parts. Practical implications – Designers and engineers seeking to minimize the environmental impacts of their prototypes should share high-utilization machines, and are advised to use FDM machines over CNC mills or polyjet machines if they provide sufficient quality of surface finish. Originality/value – This is the first paper quantitatively comparing the environmental impacts of additive manufacturing with traditional machining. It also provides a more comprehensive measurement of environmental impacts than most studies of either milling or additive manufacturing alone – it includes not merely CO2 emissions or waste but also acidification, eutrophication, human toxicity, ecotoxicity and other impact categories. Designers, engineers and job shop managers may use the results to guide sourcing or purchasing decisions related to rapid prototyping.


2012 ◽  
Vol 8 ◽  
pp. 12-21 ◽  
Author(s):  
Petra Zapp ◽  
Andrea Schreiber ◽  
Josefine Marx ◽  
Mike Haines ◽  
Jürgen-Friedrich Hake ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document