scholarly journals Effect of freeze-thaw cycles on mechanical strength of lime-treated fine-grained soils

2019 ◽  
Vol 21 ◽  
pp. 100281 ◽  
Author(s):  
Thi Thanh Hang Nguyen ◽  
Yu-Jun Cui ◽  
Valéry Ferber ◽  
Gontran Herrier ◽  
Tamer Ozturk ◽  
...  
1998 ◽  
Vol 35 (3) ◽  
pp. 471-477 ◽  
Author(s):  
Peter Viklander

A fine-grained nonplastic till was compacted in the laboratory in three types of rigid wall permeameters, having a volume of 0.4, 1.5, and 25 dm3, respectively, and, was thereafter exposed to a maximum of 18 freezing and thawing cycles. The permeabilities in the vertical direction of saturated samples were measured in unfrozen soil as well as in thawed soil. The results show that the permeabilities changed after freezing and thawing. The magnitude of the changes in this study were in the range 0.02-10 times after freeze/thaw compared with the unfrozen soil. Soil exhibited volume changes subsequent to freeze/thaw. The volume typically decreased for an initially loose soil and increased for a dense soil. Independent of whether the initial soil structure was loose or dense, a constant "residual" void ratio, eres, was obtained after 1-3 cycles. For the soil investigated, the residual void ratio ranged from 0.31 to 0.40.Key words: till, fine-grained, non plastic, permeability, freeze/thaw, residual void ratio.


2018 ◽  
Vol 8 (8) ◽  
pp. 1217 ◽  
Author(s):  
Hanbing Liu ◽  
Guobao Luo ◽  
Haibin Wei ◽  
Han Yu

Pervious concrete (PC), as an environmental friendly material, can be very important in solving urban problems and mitigating the impact of climate change; i.e., flooding, urban heat island phenomena, and groundwater decline. The objective of this research is to evaluate the strength, permeability, and freeze-thaw durability of PC with different aggregate sizes, porosities, and water-binder ratios. The orthogonal experiment method is employed in the study and nine experiments are conducted. The compressive strength, flexural strength, permeability coefficient, porosity, density, and freeze-thaw durability of PC mixtures are tested. Range analysis and variance analysis are carried out to analyze the collected data and estimate the influence of aggregate size, porosity, and water-binder ratio on PC properties. The results indicate that porosity is the most important factor determining the properties of PC. High porosity results in better permeability, but negatively affects the mechanical strength and freeze-thaw durability. PC of 15% porosity can obtain high compressive strength in excess of 20 MPa and favorable freeze-thaw durability of 80 cycles without sacrificing excessive permeability. Aggregate size also has a significant effect on freeze-thaw durability and mechanical strength. Small aggregate size is advantageous for PC properties. PC with 4.75–9.5 mm coarse aggregate presents excellent freeze-thaw durability. The influence of the water-binder ratio on PC properties is not as significant as that of aggregate size and porosity. An optimal mix ratio is required to trade-off between permeability, mechanical strength, and freeze-thaw durability.


1979 ◽  
Vol 13 (1-4) ◽  
pp. 247-276 ◽  
Author(s):  
Thaddeus C. Johnson ◽  
David M. Cole ◽  
Edwin J. Chamberlain
Keyword(s):  

Author(s):  
Jianing Xu ◽  
Yanju Wang ◽  
Jinyuan Yan ◽  
Bin Chen

Sign in / Sign up

Export Citation Format

Share Document