Mechanical Response of Full-scale Geosynthetic-reinforced Asphalt Overlays Subjected to Repeated Loads

2021 ◽  
pp. 100617
Author(s):  
V Vinay Kumar ◽  
Sireesh Saride ◽  
Jorge G Zornberg
2020 ◽  
Author(s):  
Can Muyan ◽  
Demirkan Coker

Abstract. Full-scale structural tests enable us to monitor mechanical response of the blades under various loading scenarios. Yet these tests must be accompanied with numerical simulations, so that the physical basis of the progressive damage development can be captured and interpreted correctly. Within the scope of this paper the previous work of the authors concerning the strength analysis of an existing 5-m GFRP wind turbine blade using Puck failure criteria is revisited. An important outcome of the previous study was that nonlinear Puck material model was found to be necessary for a more realistic simulation of failure mechanisms. In the current work, under extreme load cases internal flange at the leading edge, trailing edge of the blade are identified as the mainly damaged regions. Moreover, dominant failure mechanism is expected to be the de-bonding at the trailing and leading edges. When extreme load case is applied as a combination of edge-wise and flap-wise loading cases, less damage is observed compared to the pure flap-wise loading case. This damage evolution is attributed to the stiffer structural behavior of the blade under combined loading condition.


Author(s):  
Di Wu ◽  
Hanlong Liu ◽  
Gangqiang Kong ◽  
Alessandro F. Rotta Loria

This study investigates the thermo-mechanical behavior of energy piles equipped with a spiral pipe configuration. The analysis is based on the results of a full-scale energy pile as well as 3-D thermo-mechanical finite element analyses. The thermo-mechanical behavior of two energy piles with five U-shaped pipes connected in series and parallel, characterized by the same total length of the piping network, is also analyzed numerically for comparison purposes. The results of this work highlight that energy piles equipped with a spiral pipe configuration are characterized by the lowest trends of average temperature variation and thermally induced vertical stress within their volume, as compared to energy piles equipped with five U-shaped pipe configurations connected in series or parallel. Considerable variations in temperature and thermally induced vertical stress arise in the vicinity of the piping network embedded in all of the considered energy piles. Nevertheless, energy piles equipped with a spiral pipe configuration appear the best solution for practical applications in comparison with U-shaped pipe configurations of the same total length, because they maximize the heat exchange that is achieved with the ground and minimize the associated thermally induced variations of their mechanical response.


Author(s):  
D. L. Rohr ◽  
S. S. Hecker

As part of a comprehensive study of microstructural and mechanical response of metals to uniaxial and biaxial deformations, the development of substructure in 1100 A1 has been studied over a range of plastic strain for two stress states.Specimens of 1100 aluminum annealed at 350 C were tested in uniaxial (UT) and balanced biaxial tension (BBT) at room temperature to different strain levels. The biaxial specimens were produced by the in-plane punch stretching technique. Areas of known strain levels were prepared for TEM by lapping followed by jet electropolishing. All specimens were examined in a JEOL 200B run at 150 and 200 kV within 24 to 36 hours after testing.The development of the substructure with deformation is shown in Fig. 1 for both stress states. Initial deformation produces dislocation tangles, which form cell walls by 10% uniaxial deformation, and start to recover to form subgrains by 25%. The results of several hundred measurements of cell/subgrain sizes by a linear intercept technique are presented in Table I.


Author(s):  
D. L. Callahan

Modern polishing, precision machining and microindentation techniques allow the processing and mechanical characterization of ceramics at nanometric scales and within entirely plastic deformation regimes. The mechanical response of most ceramics to such highly constrained contact is not predictable from macroscopic properties and the microstructural deformation patterns have proven difficult to characterize by the application of any individual technique. In this study, TEM techniques of contrast analysis and CBED are combined with stereographic analysis to construct a three-dimensional microstructure deformation map of the surface of a perfectly plastic microindentation on macroscopically brittle aluminum nitride.The bright field image in Figure 1 shows a lg Vickers microindentation contained within a single AlN grain far from any boundaries. High densities of dislocations are evident, particularly near facet edges but are not individually resolvable. The prominent bend contours also indicate the severity of plastic deformation. Figure 2 is a selected area diffraction pattern covering the entire indentation area.


2000 ◽  
Vol 16 (2) ◽  
pp. 107-114 ◽  
Author(s):  
Louis M. Hsu ◽  
Judy Hayman ◽  
Judith Koch ◽  
Debbie Mandell

Summary: In the United States' normative population for the WAIS-R, differences (Ds) between persons' verbal and performance IQs (VIQs and PIQs) tend to increase with an increase in full scale IQs (FSIQs). This suggests that norm-referenced interpretations of Ds should take FSIQs into account. Two new graphs are presented to facilitate this type of interpretation. One of these graphs estimates the mean of absolute values of D (called typical D) at each FSIQ level of the US normative population. The other graph estimates the absolute value of D that is exceeded only 5% of the time (called abnormal D) at each FSIQ level of this population. A graph for the identification of conventional “statistically significant Ds” (also called “reliable Ds”) is also presented. A reliable D is defined in the context of classical true score theory as an absolute D that is unlikely (p < .05) to be exceeded by a person whose true VIQ and PIQ are equal. As conventionally defined reliable Ds do not depend on the FSIQ. The graphs of typical and abnormal Ds are based on quadratic models of the relation of sizes of Ds to FSIQs. These models are generalizations of models described in Hsu (1996) . The new graphical method of identifying Abnormal Ds is compared to the conventional Payne-Jones method of identifying these Ds. Implications of the three juxtaposed graphs for the interpretation of VIQ-PIQ differences are discussed.


1996 ◽  
Vol 12 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Louis M. Hsu

The difference (D) between a person's Verbal IQ (VIQ) and Performance IQ (PIQ) has for some time been considered clinically meaningful ( Kaufman, 1976 , 1979 ; Matarazzo, 1990 , 1991 ; Matarazzo & Herman, 1985 ; Sattler, 1982 ; Wechsler, 1984 ). Particularly useful is information about the degree to which a difference (D) between scores is “abnormal” (i.e., deviant in a standardization group) as opposed to simply “reliable” (i.e., indicative of a true score difference) ( Mittenberg, Thompson, & Schwartz, 1991 ; Silverstein, 1981 ; Payne & Jones, 1957 ). Payne and Jones (1957) proposed a formula to identify “abnormal” differences, which has been used extensively in the literature, and which has generally yielded good approximations to empirically determined “abnormal” differences ( Silverstein, 1985 ; Matarazzo & Herman, 1985 ). However applications of this formula have not taken into account the dependence (demonstrated by Kaufman, 1976 , 1979 , and Matarazzo & Herman, 1985 ) of Ds on Full Scale IQs (FSIQs). This has led to overestimation of “abnormality” of Ds of high FSIQ children, and underestimation of “abnormality” of Ds of low FSIQ children. This article presents a formula for identification of abnormal WISC-R Ds, which overcomes these problems, by explicitly taking into account the dependence of Ds on FSIQs.


Author(s):  
J. W. van de Lindt ◽  
S. Pei ◽  
Steve Pryor ◽  
Hidemaru Shimizu ◽  
Izumi Nakamura
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document