Dynamic performance evaluation of ballastless track in high-speed railways under subgrade differential settlement

2022 ◽  
pp. 100721
Author(s):  
Hongguang Jiang ◽  
Yixin Li ◽  
Yujie Wang ◽  
Kai Yao ◽  
Zhanyong Yao ◽  
...  
Author(s):  
P. Wang ◽  
R. Chen ◽  
X. P. Chen

Although ballastless track has such advantages as less maintenance and high stability, its big rigidity results in a strong wheel/rail dynamic interaction. In order to study a reasonable stiffness and uneven settlement limit for ballastless track and to optimize the dynamic performance of ballastless track under condition of high-speed running, vehicle together with ballastless track was viewed as an entire coupling system in this study. By adopting numerical simulation, we studied how the stiffness of foundation under rail and uneven settlement of subgrade influence the wheel/rail dynamic interaction. The results show that the reasonable stiffness of foundation under rail is within a range of 20∼30kN/mm, accordingly with a rail deformation within 1.3 ∼ 1.7mm. Through its dynamic analysis under different wavelengths and amplitudes, the uneven settlement of subgrade should be ≤L/1000.


2019 ◽  
Vol 12 (4) ◽  
pp. 339-349
Author(s):  
Junguo Wang ◽  
Daoping Gong ◽  
Rui Sun ◽  
Yongxiang Zhao

Background: With the rapid development of the high-speed railway, the dynamic performance such as running stability and safety of the high-speed train is increasingly important. This paper focuses on the dynamic performance of high-speed Electric Multiple Unit (EMU), especially the dynamic characteristics of the bogie frame and car body. Various patents have been discussed in this article. Objective: To develop the Multi-Body System (MBS) model of EMU, verify whether the dynamic performance meets the actual operation requirements, and provide some useful information for dynamics and structural design of the proposed EMU. Methods: According to the technical characteristics of a typical EMU, a MBS model is established via SIMPACK, and the measured data of China high-speed railway is taken as the excitation of track random irregularity. To test the dynamic performance of the EMU, including the stability and safety, some evaluation indexes such as wheel-axle lateral forces, wheel-axle lateral vertical forces, derailment coefficients and wheel unloading rates are also calculated and analyzed in detail. Results: The MBS model of EMU has better dynamic performance especially curving performance, and some evaluation indexes of the stability and safety have also reached China’s high-speed railway standards. Conclusion: The effectiveness of the proposed MBS model is verified, and the dynamic performance of the MBS model can meet the design requirements of high-speed EMU.


2018 ◽  
Vol 77 (6) ◽  
pp. 337-346 ◽  
Author(s):  
A. B. Kosarev ◽  
A. V. Barch ◽  
E. N. Rozenberg

Abstract. High-speed railways are fast-growing and promising type of traffic. In Russia development of high-speed railway service is associated with the solution of a number of problems, including infrastructure. Authors propose to use earth connection of the railway catenary with the help of an artificial earthing switch on currently designed high-speed line Moscow—Kazan for 2×25 kV power supply system. Taking into account requirements for electrical safety conditions for maintenance of the track and earthed catenary supports, paper justifies method for calculating allowable voltages of rail—earth points and supports of catenary. Methods takes into account structural features of ballastless track superstructure used for high-speed lines. It is estimated that the voltages admissible under the electrical safety conditions are random in nature and distributed logarithmically normal. When calculating probability of safe operation, one should take into account random nature of both permissible stresses and those actually occurring on the track. It is estimated that the probability of safe operation in traction networks of sections with ballastless track superstructure does not exceed a similar value in electrified sections with the conventional structure of a ballast prism. Feasibility of using a 2×25 kV earth system using an artificial earth connection is confirmed, recommendations on its use are given. Authors substantiate allowable values of the rail—earth voltage and catenary supports, which practically exclude the occurrence of hazardous situations for personnel maintaining the track in sections with ballastless track superstructure.


Sign in / Sign up

Export Citation Format

Share Document