Numerical evaluation of the potential for fuel economy improvement due to boundary friction reduction within heavy-duty diesel engines

2005 ◽  
Vol 38 (3) ◽  
pp. 265-275 ◽  
Author(s):  
Isaac E. Fox
2009 ◽  
Author(s):  
Wim van Dam ◽  
Peter Kleijwegt ◽  
Marnix Torreman ◽  
Gary Parsons

2007 ◽  
Author(s):  
Valeri I. Golovitchev ◽  
Luca Montorsi ◽  
Ingemar Denbratt ◽  
Felice E. Corcione ◽  
Salvatore Coppola

Author(s):  
Yu Chen ◽  
Carol Lynn Deck

In recent years the attention of the internal combustion engine industry has been on improving fuel economy. These changes not only decrease the amount of fuel used and improve the efficiency of the engine, but also save the end-user on fuel costs, reduce engine emissions, and aid in the achievement of future government fuel economy regulations. An approach to decreasing fuel consumption is through improvements to engine mechanical and thermal efficiency. MAHLE has developed a testing method to accurately measure engine specific fuel consumption (SFC). SFC is an indicator of engine efficiency, hence it is directly effected by a reduction in friction. Since changes in SFC are small, considerable precision was required to measure it. To achieve this high level of accuracy key engine parameters were controlled along with boundary parameters. This study utilized a firing heavy-duty diesel engine running on a dynamometer. Results are presented to depict the repeatability of the technique over speed and load.


Author(s):  
Xiaoyong Wang ◽  
Tsu-Chin Tsao ◽  
Chun Tai ◽  
Hyungsuk Kang ◽  
Paul N. Blumberg

Internal combustion engines can be modified to operate regenerative braking cycles by using compressed air power. This paper presents a particular air hybridization design from among many possible configurations. The engine cycles are enabled by a highly flexible engine valvetrain, which actuates engine valves to generate desired torque with optimal efficiency. A lumped parameter model is developed first to investigate the cylinder-tank mass and energy interaction based on thermodynamic relationships and engine piston kinematics. Special consideration is given to the engine valve timing and air flow. A high fidelity, detailed model using the commercially available GT-Power software is developed for a commercial 10.8 liter heavy-duty diesel engine with a 280 liter air tank in order to capture the effects of engine friction, heat transfer, gas dynamics, etc. The model is used to develop optimal valve timing for engine control. The established engine maps are incorporated into the ADVISOR vehicle simulation package to evaluate the potential fuel economy improvement for a refuse truck under a variety of driving cycles. Depending on the particular driving cycle, the simulation has shown a potential 4% – 18% fuel economy improvement over the truck equipped with the conventional baseline diesel engine.


Sign in / Sign up

Export Citation Format

Share Document