Heat transfer correlations for laminar flows within a mechanical seal chamber

2009 ◽  
Vol 42 (5) ◽  
pp. 770-778 ◽  
Author(s):  
Zhaogao Luan ◽  
M.M. Khonsari
2012 ◽  
Vol 271-272 ◽  
pp. 1093-1099
Author(s):  
Jian Ke Li ◽  
Rong Mo ◽  
Hai Cheng Yang ◽  
Zeng Qiang Wang

According to the mechanical seals’ characters of the aircraft engine: no special flush fluid equipment and the limited space etc, a numerical model of conjugate heat transfer between seal rings and seal chamber is presented. And the flow channel and the flow quantity in the mechanical seal are studied, which will affect the heat transfer between the surface of the seal ring and the flush fluid. At last, the studied results are validated by the test.


Author(s):  
Michel F. M. Speetjens ◽  
Anton A. van Steenhoven
Keyword(s):  

2006 ◽  
Vol 128 (10) ◽  
pp. 1070-1080 ◽  
Author(s):  
Debashis Pramanik ◽  
Sujoy K. Saha

The heat transfer and the pressure drop characteristics of laminar flow of viscous oil through rectangular and square ducts with internal transverse rib turbulators on two opposite surfaces of the ducts and fitted with twisted tapes have been studied experimentally. The tapes have been full length, short length, and regularly spaced types. The transverse ribs in combination with full-length twisted tapes have been found to perform better than either ribs or twisted tapes acting alone. The heat transfer and the pressure drop measurements have been taken in separate test sections. Heat transfer tests were carried out in electrically heated stainless steel ducts incorporating uniform wall heat flux boundary conditions. Pressure drop tests were carried out in acrylic ducts. The flow was periodically fully developed in the regularly spaced twisted-tape elements case and decaying swirl flow in the short-length twisted tapes case. The flow characteristics are governed by twist ratio, space ratio, and length of twisted tape, Reynolds number, Prandtl number, rod-to-tube diameter ratio, duct aspect ratio, rib height, and rib spacing. Correlations developed for friction factor and Nusselt number have predicted the experimental data satisfactorily. The performance of the geometry under investigation has been evaluated. It has been found that on the basis of both constant pumping power and constant heat duty, the regularly spaced twisted-tape elements in specific cases perform marginally better than their full-length counterparts. However, the short-length twisted-tape performance is worse than the full-length twisted tapes. Therefore, full-length twisted tapes and regularly spaced twisted-tape elements in combination with transverse ribs are recommended for laminar flows. However, the short-length twisted tapes are not recommended.


Author(s):  
Prabu Surendran ◽  
Sahil Gupta ◽  
Tiberiu Preda ◽  
Igor Pioro

This paper presents a thorough analysis of ability of various heat transfer correlations to predict wall temperatures and Heat Transfer Coefficients (HTCs) against experiments on internal forced-convective heat transfer to supercritical carbon dioxide conducted by Koppel [1], He [2], Kim [3] and Bae [4]. It should be noted the Koppel dataset was taken from a paper which used the Koppel data but was not written by Koppel. All experiments were completed in bare tubes with diameters from 0.948 mm to 9 mm for horizontal and vertical configurations. The datasets contain a total of 1573 wall temperature points with pressures ranging from 7.58 to 9.59 MPa, mass fluxes of 400 to 1641 kg/m2s and heat fluxes from 20 to 225 kW/m2. The main objective of the study was to compare several correlations and select the best of them in predicting HTC and wall temperature values for supercritical carbon dioxide. This study will be beneficial for analyzing heat exchangers involving supercritical carbon dioxide, and for verifying scaling parameters between CO2 and other fluids. In addition, supercritical carbon dioxide’s use as a modeling fluid is necessary as the costs of experiments are lower than supercritical water. The datasets were compiled and calculations were performed to find HTCs and wall and bulk-fluid temperatures using existing correlations. Calculated results were compared with the experimental ones. The correlations used were Mokry et al. [5], Swenson et al. [6] and a set of new correlations presented in Gutpa et al. [7]. Statistical error calculations were performed are presented in the paper.


1970 ◽  
Vol 92 (3) ◽  
pp. 257-266
Author(s):  
D. A. Nealy ◽  
P. W. McFadden

Using the integral form of the laminar boundary layer thermal energy equation, a method is developed which permits calculation of thermal boundary layer development under more general conditions than heretofore treated in the literature. The local Stanton number is expressed in terms of the thermal convection thickness which reflects the cumulative effects of variable free stream velocity, surface temperature, and injection rate on boundary layer development. The boundary layer calculation is combined with the wall heat transfer problem through a coolant heat balance which includes the effect of axial conduction in the wall. The highly coupled boundary layer and wall heat balance equations are solved simultaneously using relatively straightforward numerical integration techniques. Calculated results exhibit good agreement with existing analytical and experimental results. The present results indicate that nonisothermal wall and axial conduction effects significantly affect local heat transfer rates.


Sign in / Sign up

Export Citation Format

Share Document