A study of the effect of palm oil as MQL lubricant on high speed drilling of titanium alloys

2011 ◽  
Vol 44 (3) ◽  
pp. 309-317 ◽  
Author(s):  
E.A. Rahim ◽  
H. Sasahara
2010 ◽  
Vol 447-448 ◽  
pp. 816-820 ◽  
Author(s):  
Erween Abdul Rahim ◽  
Hiroyuki Sasahara

Surface integrity is particularly important for the aerospace industry components in order to permit longer service life and maximized its reliability. This present work compares the performance of palm oil and synthetic ester on surface roughness, surface defect, microhardness and subsurface deformation when high speed drilling of Ti-6Al-4V under MQL condition. The drilling tests were conducted with AlTiN coated carbide tool. The surface roughness decreased with increasing in cutting speed and thicker subsurface deformation was formed underneath the machined surface. Grooves, cavities, pit holes, microcracks and material smearing were the dominant surface damages thus deteriorated the machined surface. For both lubricants, the machined surface experienced from thermal softening and work hardening effect thus gave a variation in microhardness values. The results indicated the substantial benefit of MQL by palm oil on surface integrity.


2010 ◽  
Vol 443 ◽  
pp. 359-364 ◽  
Author(s):  
Erween Abdul Rahim ◽  
Hiroyuki Sasahara

This paper describes the results of application of different MQL liquids (synthetic ester and palm oil) to high speed drilling of Ti-6Al-4V. The investigation was focused on the surface integrity of the machined surface. It was found that palm oil could be a viable alternative to the synthetic ester for MQL liquid application.


2021 ◽  
Vol 46 (3) ◽  
pp. 614-618
Author(s):  
Anne L. Markey ◽  
Samuel C. Leong ◽  
Casey Vaughan

Author(s):  
B W Huang

The dynamic characteristics of high-speed drilling were investigated in this study. To improve quality and produce a higher production rate, the dynamic characteristics of the drilling process need to be studied. A pre-twisted beam is used to simulate the drill. The moving Winkler-type elastic foundation is used to approximate the drilling process. A time-dependent vibration model for drilling is presented. The spinning speed, pre-twisted angle and thrust force effects of the drill are considered. The numerical analysis indicates that the natural frequency is suddenly reduced as the drill moves into a workpiece.


CIRP Annals ◽  
2013 ◽  
Vol 62 (1) ◽  
pp. 243-246 ◽  
Author(s):  
G. Ambrogio ◽  
F. Gagliardi ◽  
S. Bruschi ◽  
L. Filice

1985 ◽  
Vol 107 (4) ◽  
pp. 325-335 ◽  
Author(s):  
R. Komanduri ◽  
D. G. Flom ◽  
M. Lee

Results of a four-year Advanced Machining Research Program (AMRP) to provide a science base for faster metal removal through high-speed machining (HSM), high-throughput machining (HTM) and laser-assisted machining (LAM) are presented. Emphasis was placed on turning and milling of aluminum-, nickel-base-, titanium-, and ferrous alloys. Experimental cutting speeds ranged from 0.0013 smm (0.004 sfpm) to 24,500 smm (80,000 sfpm). Chip formation in HSM is found to be associated with the formation of either a continuous, ribbon-like chip or a segmental (or shear-localized) chip. The former is favored by good thermal properties, low hardness, and fcc/bcc crystal structures, e.g., aluminum alloys and soft carbon steels, while the latter is favored by poor thermal properties, hcp structure, and high hardness, e.g., titanium alloys, nickel base superalloys, and hardened alloy steels. Mathematical models were developed to describe the primary features of chip formation in HSM. At ultra-high speed machining (UHSM) speeds, chip type does not change with speed nor does tool wear. However, at even moderately high speeds, tool wear is still the limiting factor when machining titanium alloys, superalloys, and special steels. Tool life and productivity can be increased significantly for special applications using two novel cutting tool concepts – ledge and rotary. With ledge inserts, titanium alloys can be machined (turning and face milling) five times faster than conventional, with long tool life (~ 30 min) and cost savings up to 78 percent. A stiffened rotary tool has yielded a tool life improvement of twenty times in turning Inconel 718 and about six times when machining titanium 6A1-4V. Significantly increased metal removal rates (up to 50 in.3/min on Inconel 718 and Ti 6A1-4V) have been achieved on a rigid, high-power precision lathe. Continuous wave CO2 LAM, though conceptually feasible, limits the opportunities to manufacture DOD components due to poor adsorption (~ 10 percent) together with high capital equipment and operating costs. Pulse LAM shows greater promise, especially if new laser source concepts such as face pump lasers are considered. Economic modeling has enabled assessment of HSM and LAM developments. Aluminum HSM has been demonstrated in a production environment and substantial payoffs are indicated in airframe applications.


Sign in / Sign up

Export Citation Format

Share Document