advanced machining
Recently Published Documents


TOTAL DOCUMENTS

146
(FIVE YEARS 29)

H-INDEX

10
(FIVE YEARS 2)

Author(s):  
Ishaan R. Kale ◽  
Mayur A. Pachpande ◽  
Swapnil P. Naikwadi ◽  
Mayur N. Narkhede

The demand of Advanced Machining Processes (AMP) is continuously increasing owing to the technological advancement. The problems based on AMP are complex in nature as it consisted of parameters which are interdependent. These problems also consisted of linear and nonlinear constraints. This makes the problem complex which may not be solved using traditional optimization techniques. The optimization of process parameters is indispensable to use AMP's at its aptness and to make it economical to use. This paper states the optimization of process parameters of Ultrasonic machining (USM) and Abrasive water jet machining (AWJM) processes to maximize the Material Removal Rate (MRR) using a socio inspired Cohort Intelligent (CI) algorithm. The constraints involved with these problems are handled using static penalty function approach. The solutions are compared with other contemporary techniques such as Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Modified Harmony Search (HS_M) and Genetic Algorithm (GA).


2021 ◽  
pp. 69-93
Author(s):  
Jitendra Kumar Katiyar ◽  
Ranjeet Kumar Sahu
Keyword(s):  

SINERGI ◽  
2021 ◽  
Vol 25 (3) ◽  
pp. 279
Author(s):  
Kushendarsyah Saptaji ◽  
Arnaz Asa Sholeh ◽  
Gigih Priyandoko ◽  
Ignatius Budi Hadisujoto

The increasing number of materials with variation in properties, especially hard-to-cut, leads to the need for an advanced machining method to process such material. Electric Discharge Machining (EDM) is one of the advanced machining methods widely used for hard-to-cut alloys. The EDM process uses an electrode as the conductor of electrical current to erode the metal alloys and is supported by other components. Due to EDM's high cost and high energy consumption, developing a low-cost EDM and simpler EDM setup is necessary, especially for educational purposes in laboratory activity. However, the EDM design and setup required to produce the desired “spark” have always been a challenge for researchers and manufacturers. In this research, a small-scale EDM setup was built. A solenoid actuator is used to generate simple mechanical movement. The movement is used to control the gap between the workpiece and the electrode to produce a spark. The solenoid actuator is used because of its low cost and simple mechanism. The proposed EDM setup is successfully fabricated and works appropriately by generating sparks and a hole cavity during the process. There are six cavity holes produced in mild steel workpiece during the experiments with various parameters such as current (5A, 7A, and 10A) and frequency (10 Hz and 20 Hz). The varied parameter shows that the higher current and lower frequency removed more materials. In contrast, the higher frequency produced a better quality of the cavity hole. However, the lack of flushing quality on the material debris during the process results in the formation of excess metals around the edge of the hole. 


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1530
Author(s):  
Daniel Gräbner ◽  
Tjarden Zielinski ◽  
Andrey Vovk ◽  
Oltmann Riemer ◽  
Bernhard Karpuschewski ◽  
...  

The loads acting on a workpiece during machining processes determine the modification of the surface of the final workpiece and, thus, its functional properties. In this work, a method that uses thermocouples to measure the temperature in precision fly-cutting machining with high spatial and temporal resolution is presented. Experiments were conducted for various materials and machining parameters. We compare experimental measurement data with results from modern and advanced machining process simulation and find a good match between experimental and simulation results. Therefore, the simulation is validated by experimental data and can be used to calculate realistic internal loads of machining processes.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6144 ◽  
Author(s):  
Aqib Mashood Khan ◽  
Saqib Anwar ◽  
Munish Kumar Gupta ◽  
Abdullah Alfaify ◽  
Saqib Hasnain ◽  
...  

Sustainability assessments of cooling/lubrication-assisted advanced machining processes has been demanded by environment control agencies because it is an effective management tool for improving process sustainability. To achieve an effective and efficient sustainability evolution of machining processes, there is a need to develop a new method that can incorporate qualitative indicators to create a quantifiable value. In the present research work, a novel quantifiable sustainability value assessment method was proposed to provide performance quantification of the existing sustainability assessment methods. The proposed method consists of three steps: establishing sustainable guidelines and identifying new indicators, data acquisition, and developing an algorithm, which creates the Overall Performance Assessment Indicator (OPAI) from the sustainability assessment method. In the proposed algorithm, initially, both quantitative and qualitative sustainability indicators are normalized. After weight assignment and aggregation, the OPAI is obtained. The developed algorithm was validated from three literature case studies, and optimal cutting parameters were obtained. The present methodology provides effective guidelines for a machinist to enhance process performance and achieve process optimization. The study also offers a relationship between sustainable and machining metrics for the support of industrial sustainability.


2020 ◽  
pp. 251659842093102
Author(s):  
M. J. Jackson ◽  
J. Burgess ◽  
Michael Whitfield ◽  
M. Whitt ◽  
R. B. DaSilva ◽  
...  

The advanced machining of components used in miniature unmanned aircraft vehicles is the focus of this study. The finite element method (FEM) is used to predict forces and temperatures using cutting tool inserts with a thin nanostructured film of high integrity. Similarity models are used to validate the finite element results and to understand the influence of micromachining parameters on cutting temperatures generated when machining Al 380-0 alloy. The predicted results are compared to experimental forces and temperatures using a three-dimensional piezoelectric function dynamometer and a short-range infra-red wavelength thermal camera. Nanostructured thin layer coatings lower machining forces and temperatures, which are validated through FEM predictions and experimental observations. The experimental results suggest that increasing the cutting tool’s rake angle at higher depths of cut will reduce cutting temperatures, which are predicted using the similarity models for micromachining.


2020 ◽  
Author(s):  
Mohammad Arafat ◽  
Ning Fanghua

Till now titanium and its alloys used in different industrial sectors. Unique material characteristics make it as desirable raw material for the automotive, aerospace, petroleum, chemical, marine and biomedical industries. It requires deformation and fabrication process as difficult-to-cut material. There are several challenges hidden under the processes. Therefore, advanced machining process performance investigation in titanium and its titanium alloys machining has taken part of the research concern. A number of research works has been done in every year to show the research direction. However, most of them are specifically in one machining process. It’s important to have a clear picture of a research area for further research consideration. Therefore, this review aim to study recent articles of non-traditional machining process of titanium and its alloys. The focus of this review was on the contribution for solving existing problems by using non-traditional machining processes, most efficient process and general overview. At the end it also provided a summary of sustainable issue of non-traditional machining processes.


Sign in / Sign up

Export Citation Format

Share Document