Contact characteristic parameters modeling for the assembled structure with bolted joints

2022 ◽  
Vol 165 ◽  
pp. 107272
Author(s):  
Wenbo Shi ◽  
Zhousuo Zhang
2010 ◽  
Vol 37-38 ◽  
pp. 534-539
Author(s):  
Tie Neng Guo ◽  
Dong Liang Guo ◽  
Li Gang Cai ◽  
Bin Song ◽  
Jing Nan Zhao

The combined three-section crossbeam is an important component in the heavy gantry CNC milling-lathing machine tool and the dynamic characteristics are key precision factors for the machine tool. Three sections of the combined crossbeam are bolted by large industrial bolts and the influence of bolted joints should be evaluated in the dynamic analysis of the combined crossbeam. The dynamic characteristics of the combined three-section crossbeam were extracted by the modal experiment. The FEM of the monolithic crossbeam was modeled to analyze the dynamic characteristic parameters. The comparison of the analysis result and experimental result were shown. The experimental result matched well with the FEM of the monolithic crossbeam without bolted joints. As a result, the influence of the bolted joints could be ignorable in dynamic characteristic for the combined three-section crossbeam.


2018 ◽  
Vol 70 (2) ◽  
pp. 353-362 ◽  
Author(s):  
Yuqin Wen ◽  
Jin Yuan Tang

Purpose This paper aims to study the contact between rough cylindrical surfaces considering the elastic-plastic deformation of asperities. Design/methodology/approach The elastic deformation of the nominal surface of the curved surface is considered, the contact area is discretized by the calculus thought and then the nominal distance between two surfaces is obtained by iteration after the pressure distribution is assumed. On the basis of the Zhao, Maietta and Chang elastic-plastic model, the contact area and the contact pressure of the rough cylindrical surfaces are calculated by the integral method, and then the solution for the contact between rough cylindrical surfaces is obtained. Findings The contact characteristic parameters of smooth surface Hertz contact, elastic contact and elastic-plastic contact between rough cylindrical surfaces are calculated under different plastic indexes and loads, and the calculation results are compared and analyzed. The analysis shows that the solution considering the elastic-plastic deformation of asperities for the contact between rough cylindrical surfaces is scientific and rational. Originality/value This paper provides a new effective method for the calculation of the contact between rough cylindrical surfaces.


1994 ◽  
Vol 144 ◽  
pp. 185-187
Author(s):  
S. Orlando ◽  
G. Peres ◽  
S. Serio

AbstractWe have developed a detailed siphon flow model for coronal loops. We find scaling laws relating the characteristic parameters of the loop, explore systematically the space of solutions and show that supersonic flows are impossible for realistic values of heat flux at the base of the upflowing leg.


2020 ◽  
Vol 14 (3) ◽  
pp. 7141-7151 ◽  
Author(s):  
R. Omar ◽  
M. N. Abdul Rani ◽  
M. A. Yunus

Efficient and accurate finite element (FE) modelling of bolted joints is essential for increasing confidence in the investigation of structural vibrations. However, modelling of bolted joints for the investigation is often found to be very challenging. This paper proposes an appropriate FE representation of bolted joints for the prediction of the dynamic behaviour of a bolted joint structure. Two different FE models of the bolted joint structure with two different FE element connectors, which are CBEAM and CBUSH, representing the bolted joints are developed. Modal updating is used to correlate the two FE models with the experimental model. The dynamic behaviour of the two FE models is compared with experimental modal analysis to evaluate and determine the most appropriate FE model of the bolted joint structure. The comparison reveals that the CBUSH element connectors based FE model has a greater capability in representing the bolted joints with 86 percent accuracy and greater efficiency in updating the model parameters. The proposed modelling technique will be useful in the modelling of a complex structure with a large number of bolted joints.


Sign in / Sign up

Export Citation Format

Share Document