Long-term influence of vacuum and thermal environment on the thermalresistance across filled, bolted joints

1969 ◽  
Author(s):  
A. CALIMBAS
2020 ◽  
Vol 12 (21) ◽  
pp. 9284
Author(s):  
Jiao Xue ◽  
Xiao Hu ◽  
Shu Nuke Sani ◽  
Yuanyuan Wu ◽  
Xinyu Li ◽  
...  

Thermally comfortable outdoor spaces have contributed to high-quality urban living. In order to provide a further understanding of the influences of gender and long-term thermal history on outdoor thermal comfort, this study conducted field surveys at a university campus in Shanghai, China by carrying out microclimatic monitoring and subjective questionnaires from May to October, 2019. The analysis of collected data found that, during our survey, 57% of the occupants felt comfortable overall and 40–60% of them perceived the microclimate variables (air temperature, humidity, solar radiation, and wind speed) as “neutral”. The universal thermal climate index (UTCI) provided a better correlation with occupant thermal sensation than the physiologically equivalent temperature (PET). Females were more sensitive to the outdoor thermal environment than males. Older age led to lower thermal sensation, but the thermal sensitivities for age groups of <20, 20–50, and >50 were similar. Occupants who had resided in Shanghai for a longer period showed higher overall comfort rating and lower thermal sensation. Interviewees who came from hot summer and cold winter climate regions were less effected by the change of UTCI than those from severe cold or cold climate regions.


1988 ◽  
Vol 15 (4) ◽  
pp. 633-643 ◽  
Author(s):  
Ian Smith ◽  
Luke R. J. Whale ◽  
Colin Anderson ◽  
Barry O. Hilson ◽  
Peter D. Rodd

This paper summarizes the output from a long-term project commenced in 1980 with the objective of providing reliable knowledge of the mechanical properties of nailed or bolted joints subjected to short-term lateral loadings. Motivation was the development on an international basis of probability-based partial coefficients limit states design codes for structural timberwork. Comparisons are presented between design solutions produced by applying this research and those by the use of contemporary "soft conversion" international partial coefficients limit states design codes that were calibrated from previously available data. Differences relate primarily to design of bolted joints. It is shown that there is an established acceptance in Canada of the approach adopted. Key words: wood, joints, nails, bolts, design.


Author(s):  
Hyunjun Yun ◽  
Jinho Yang ◽  
Byong Hyoek Lee ◽  
Jongcheol Kim ◽  
Jong-Ryeul Sohn

IoT-based monitoring devices can transmit real-time and long-term thermal environment data, enabling innovative conversion for the evaluation and management of the indoor thermal environment. However, long-term indoor thermal measurements using IoT-based devices to investigate health effects have rarely been conducted. Using apartments in Seoul as a case study, we conducted long-term monitoring of thermal environmental using IoT-based real-time wireless sensors. We measured the temperature, relative humidity (RH), and CO2 in the kitchen, living room, and bedrooms of each household over one year. In addition, in one of the houses, velocity and globe temperatures were measured for multiple summer and autumn seasons. Results of our present study indicated that outdoor temperature is an important influencing factor of indoor thermal environment and indoor RH is a good indicator of residents’ lifestyle. Our findings highlighted the need for temperature management in summer, RH management in winter, and kitchen thermal environment management during summer and tropical nights. This study suggested that IoT devices are a potential approach for evaluating personal exposure to indoor thermal environmental risks. In addition, long-term monitoring and analysis is an efficient approach for analyzing complex indoor thermal environments and is a viable method for application in healthcare.


2001 ◽  
Vol 7 (13) ◽  
pp. 155-158 ◽  
Author(s):  
Sohei ARUJI ◽  
Hiroshi YOSHINO ◽  
Hiroaki NIITSUMA ◽  
Teruaki MITAMURA ◽  
Takashi IRIGUCHI

2020 ◽  
Vol 10 (15) ◽  
pp. 5036
Author(s):  
Detelin Markov ◽  
Nikolay Ivanov ◽  
George Pichurov ◽  
Marina Zasimova ◽  
Peter Stankov ◽  
...  

The objective of the paper is to demonstrate the importance of the unsteady Computational Fluid Dynamics (CFD) simulations and long-term measurements for the reliable assessment of thermal comfort indoors, for proper categorization of the indoor thermal environment and for identifying the reasons for complaints due to draught discomfort. Numerical simulations and experimental measurements were applied in combination to study ventilation in a field laboratory, a university classroom with a controlled indoor environment. Strong unsteadiness of the airflow was registered both in the unsteady RANS results and the real-scale long-term velocity data measured with thermo anemometer. Low-frequency high-amplitude velocity fluctuations observed lead to substantial time variation of the draught rate. In case of categorization of a thermal environment, the point measurements or steady-state RANS computations would lead to wrong conclusions as well as they cannot be used for identification of the reasons for people’s complaints due to draught discomfort if strong unsteadiness of the airflow exists. It is demonstrated that the length of the time interval for draught rate (DR) assessment may not be universal if low-frequency high-amplitude pulsations are present in the room airflow.


Sign in / Sign up

Export Citation Format

Share Document