A thermofluid network based methodology for integrated system simulation of heat transfer and combustion in a coal-fired furnace

2019 ◽  
Vol 10 ◽  
pp. 253-267
Author(s):  
W.A. van der Meer ◽  
P.G. Rousseau ◽  
R. Naidoo
2001 ◽  
Vol 142 (1-3) ◽  
pp. 263-269 ◽  
Author(s):  
Thomas J.T. Kwan ◽  
Allen R. Mathews ◽  
Peggy J. Christenson ◽  
Charles M. Snell

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Muhammad Sajid Khan ◽  
Muhammad Abid ◽  
Khuram Pervez Amber ◽  
Hafiz Muhammad Ali ◽  
Mi Yan ◽  
...  

Parabolic dish solar collectors gain higher solar to thermal conversion efficiency due to their maximum concentration ratio. The present research focuses by integrating the parabolic dish solar collector to the steam cycle producing power and rate of process heating. Pressurized water, therminol VP1, and supercritical carbon dioxide are the examined working fluids in the parabolic dish solar collector. The aim of the current research is to observe the optimal operating conditions for each heat transfer fluid by varying inlet temperature and flow rate of the working fluid in the parabolic dish solar collector, and combination of these parameters is predicted to lead to the maximum energy and exergy efficiencies of the collector. The operating parameters are varied to investigate the overall system efficiencies, work output, and process heating rate. Findings of the study declare that water is an efficient heat transfer fluid at low temperature levels, whereas therminol VP1 is effective for a higher temperature range. The integrated system efficiencies are higher at maximum flow rates and low inlet temperatures. The efficiency map of solar collector is located at the end of study, and it shows that maximum exergy efficiency gains at inlet temperature of 750 K and it is observed to be 37.75%.


Author(s):  
B. Chudnovsky ◽  
I. Chatskiy

Abstract As it is well known, deposits in boilers contribute to boiler inefficiency, capacity reductions, and overheated tubes, which lead to tube failures. To improve the heat transfer inside the furnace the fouling deposits obviously should be removed. In order to take fouling into account in the overall furnace and boiler heat balance it is necessary to measure two main parameters — thickness of the deposits and their reflectivity (emissivity) in the wavelength of visible and IR region. In the present paper it is demonstrated how such measurement (see detailed description in Ref [1–3] can be used for on-line automatic sootblowing control. Results of our study demonstrate that dynamics of both parameters (contamination thickness and reflectivity) on the operated boiler can be registered in real time and then interpreted separately. The sootblowing boiler monitoring has been implemented at the 550 MW unit equipped with B&W opposite wall burners. The fouling and thickness sensors (FTR) were installed in different locations of the combustion chamber through its width and height. It was shown that dynamics of thickness and reflectivity variation just after the wall cleaning activation are quite different. Situations have been registered where changes of reflectivity have a significant impact on heat transfer, comparable and sometimes even greater than that of growing fouling thickness. Technique and device exploited in this study appears to be a very useful tool for sootblowing optimization and, as a result, for improvement of boiler efficiency and reduction of water wall erosion and corrosion. The paper presents a strategy to implement a comprehensive automatic control of soot blowing in power plant boilers. The paper will describe the existing installations where individual components are in operation, and describe an integrated system that could combine all these parts to make an integrated intelligent sootblowing system.


2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Muhammad Abid ◽  
Muhammad Sajid Khan ◽  
Tahir Abdul Hussain Ratlamwala

The concentration ratio of the parabolic dish solar collector (PDSC) is considered to be one of the highest among the concentrated solar power technologies (CSPs); therefore, such system is capable of generating more heat rate. The present paper focuses on the integration of the PDSC with the combined cycle (gas cycle as the toping cycle and steam cycle as the bottoming cycle) along with the utilization of waste heat from the power cycle to drive the single effect lithium bromide/water absorption cycle. Molten salt is used as a heat transfer fluid in the solar collector. The engineering equation solver (EES) is employed for the mathematical modeling and simulation of the solar integrated system. The various operating parameters (beam radiation, inlet and ambient temperatures of heat transfer fluid, mass flow rate of heat transfer fluid, evaporator temperature, and generator temperature) are varied to analyze their influence on the performance parameters (power output, overall energetic and exergetic efficiencies, outlet temperature of the receiver, and as coefficient of performance (COP) and exergy efficiencies) of the integrated system. The results show that the overall energy and exergy efficiencies are observed to be 39.9% and 42.95% at ambient temperature of 27 °C and solar irradiance of 1000 W/m2. The outlet temperature of the receiver is noticed to decrease from 1008 K to 528 K for an increase in the mass flow rate from 0.01 to 0.05 kg/s. The efficiency rate of the power plant is 38%, whereas COP of single effect absorption system is 0.84, and it will decrease from 0.87 to 0.79. However, the evaporator load is decreased to approximately 9.7% by increasing the generator temperature from 47 °C to 107 °C.


2012 ◽  
Vol 96 ◽  
pp. 74-83 ◽  
Author(s):  
R. Baetens ◽  
R. De Coninck ◽  
J. Van Roy ◽  
B. Verbruggen ◽  
J. Driesen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document