Effect of P on crystallization behavior and soft-magnetic properties of Fe83.3Si4Cu0.7B12−xPx nanocrystalline soft-magnetic alloys

2011 ◽  
Vol 519 (23) ◽  
pp. 8283-8286 ◽  
Author(s):  
A.D. Wang ◽  
H. Men ◽  
B.L. Shen ◽  
G.Q. Xie ◽  
A. Makino ◽  
...  
2013 ◽  
Vol 27 (19) ◽  
pp. 1341013
Author(s):  
WEI LU ◽  
PING HUANG ◽  
YUXIN WANG ◽  
BIAO YAN

In this paper, Nb element was partially replaced by V element in Finemet-type Fe 73 Cu 1 Nb 3.5-x V x Si 13.5 B 9 (x = 1, 1.5, 2) alloys and the effect of annealing temperatures on the microstructure and AC magnetic properties of the samples are studied. The annealing temperatures affect the grain sizes of the bcc α- Fe phase greatly. When the annealing temperature is between 540–560°C, the samples have better AC magnetic properties than the samples annealed at other temperatures. The optimized annealing temperature of the studied samples is around 560°C. The coercivity and iron loss of the V2 sample is a little bit higher than that of V1 and V1.5 alloys while the amplitude permeability of V2 alloy is larger than that of V1 and V1.5, which indicate that the content of V element has strong influence on the magnetic properties of nanocrystalline soft magnetic alloys.


2019 ◽  
Vol 821 ◽  
pp. 250-255
Author(s):  
Vladimir S. Tsepelev ◽  
Yuri N. Starodubtsev ◽  
V.Ya. Belozerov

In this work, the effect of different inhibitors on the thermal stability of the magnetic properties in Fe73.5Cu1M3Si13.5B9 nanocrystalline alloys, where M = Nb, W, Mo, was investigated. Nanocrystalline alloy with tungsten has the greatest thermal stability. The change in the magnetic properties in the ageing process was associated with vacancies and vacancy clusters, the formation of which is facilitated by large atoms of inhibitory elements occupying free positions in the substitution solid solution.


2012 ◽  
Vol 710 ◽  
pp. 297-302 ◽  
Author(s):  
Shailesh K. Chaurasia ◽  
Ujjwal Prakash ◽  
Kamlesh Chandra ◽  
Prabhu S. Misra

Sintered P/M ferrous compacts containing up to 0.8% phosphorous have attractive set of mechanical and magnetic properties. Large phosphorous additions increase the shrinkage during sintering to such a degree that the tolerances of the sintered component may become adversely affected. Further, the sintering process requires more time and energy and is hence costly. To overcome the above problems, powder forging route has been used. In this process encapsulated Fe- P based alloy powder is heated and forged it into slabs. These were hot rolled to produce sheet and wires. Phosphorous addition improves the final density of the resulting product. It also improves the soft magnetic properties. All the alloys exhibited excellent workability.


2022 ◽  
Vol 8 ◽  
Author(s):  
Z. Li ◽  
K. F. Yao ◽  
T. C. Liu ◽  
X. Li ◽  
S. Wang

A series of nanocrystalline soft magnetic alloys with nominal compositions of Fe66.8-xCo10NixCu0.8Nb2.9Si11.5B8 (x = 1–15 at%) were developed and studied. Effects of annealing on the soft magnetic properties, crystallization behavior, and domain structure were investigated. The alloys with higher Ni content were prone to exhibit stronger magnetic anisotropy. The Fe66.8Co10Ni10Cu0.8Nb2.9Si11.5B8 alloy exhibited excellent soft magnetic properties, including the low permeability of 2000, low coercivity of about 0.6 A/m, and low remanence of 2.4 mT, together with a temperature gap of 128 K between two crystallization onset temperatures. It has been found that the Ni content and the annealing process possess significant effects on the soft magnetic property of the nanocrystalline alloys. It shows that the developed Fe66.8Co10Ni10Cu0.8Nb2.9Si11.5B8 nanocrystalline alloy exhibits great potentials for applying in the field of common mode chokes or current transformers, due to its ability to resist the direct current.


Sign in / Sign up

Export Citation Format

Share Document