scholarly journals Effect of Annealing on the Magnetic Properties of FeCoNiCuNbSiB Soft Magnetic Alloys

2022 ◽  
Vol 8 ◽  
Author(s):  
Z. Li ◽  
K. F. Yao ◽  
T. C. Liu ◽  
X. Li ◽  
S. Wang

A series of nanocrystalline soft magnetic alloys with nominal compositions of Fe66.8-xCo10NixCu0.8Nb2.9Si11.5B8 (x = 1–15 at%) were developed and studied. Effects of annealing on the soft magnetic properties, crystallization behavior, and domain structure were investigated. The alloys with higher Ni content were prone to exhibit stronger magnetic anisotropy. The Fe66.8Co10Ni10Cu0.8Nb2.9Si11.5B8 alloy exhibited excellent soft magnetic properties, including the low permeability of 2000, low coercivity of about 0.6 A/m, and low remanence of 2.4 mT, together with a temperature gap of 128 K between two crystallization onset temperatures. It has been found that the Ni content and the annealing process possess significant effects on the soft magnetic property of the nanocrystalline alloys. It shows that the developed Fe66.8Co10Ni10Cu0.8Nb2.9Si11.5B8 nanocrystalline alloy exhibits great potentials for applying in the field of common mode chokes or current transformers, due to its ability to resist the direct current.

2019 ◽  
Vol 821 ◽  
pp. 250-255
Author(s):  
Vladimir S. Tsepelev ◽  
Yuri N. Starodubtsev ◽  
V.Ya. Belozerov

In this work, the effect of different inhibitors on the thermal stability of the magnetic properties in Fe73.5Cu1M3Si13.5B9 nanocrystalline alloys, where M = Nb, W, Mo, was investigated. Nanocrystalline alloy with tungsten has the greatest thermal stability. The change in the magnetic properties in the ageing process was associated with vacancies and vacancy clusters, the formation of which is facilitated by large atoms of inhibitory elements occupying free positions in the substitution solid solution.


2012 ◽  
Vol 710 ◽  
pp. 297-302 ◽  
Author(s):  
Shailesh K. Chaurasia ◽  
Ujjwal Prakash ◽  
Kamlesh Chandra ◽  
Prabhu S. Misra

Sintered P/M ferrous compacts containing up to 0.8% phosphorous have attractive set of mechanical and magnetic properties. Large phosphorous additions increase the shrinkage during sintering to such a degree that the tolerances of the sintered component may become adversely affected. Further, the sintering process requires more time and energy and is hence costly. To overcome the above problems, powder forging route has been used. In this process encapsulated Fe- P based alloy powder is heated and forged it into slabs. These were hot rolled to produce sheet and wires. Phosphorous addition improves the final density of the resulting product. It also improves the soft magnetic properties. All the alloys exhibited excellent workability.


2009 ◽  
Vol 152-153 ◽  
pp. 66-69 ◽  
Author(s):  
V.V. Gubernatorov ◽  
T.S. Sycheva ◽  
Irina I. Kositsyna

A new concept is suggested that serves to explain the effects of thermomagnetic treatment. Its validity is proved via measurements of magnetic properties and electron microscopy examination of structure of soft magnetic materials after different treatments. This concept allows one to consciously choose the treatment mode aiming on improvement of magnetic properties of alloys.


2018 ◽  
Vol 29 (22) ◽  
pp. 19517-19523 ◽  
Author(s):  
Huiyun Xiao ◽  
Anding Wang ◽  
Chengliang Zhao ◽  
Aina He ◽  
Guoyang Zhang ◽  
...  

2013 ◽  
Vol 320 ◽  
pp. 83-87 ◽  
Author(s):  
Yue Gu ◽  
Yue Sheng Chao

The stability and the soft magnetic properties of amorphous Fe52Co34Hf7B6Cu1 alloys have been investigated in this paper. Amorphous Fe52Co34Hf7B6Cu1 alloys ribbons are prepared by single-roller-quenching method. The differential thermal analysis (DTA), X-ray diffraction (XRD), Mössbauer Spectroscopy, transmission electron microscope (TEM) and vibrating sample magnetometer (VSM) were used for characterizing microstructures, soft magnetic properties, and evaluating the influence of adding manners of B on the stability of as-quenched specimens. The XRD curve shows a wide dispersion of peak, the TEM diffraction ring was dispersed cyclic, the pattern of the matrix was homogeneous, and the Mössbauer spectrum of as-quenched alloy presents a typical broadened and overlapped sextet, which confirms the as-quenched alloy in fully amorphous state. The DTA results showed the activation energy of Fe52Co34Hf7B6Cu1 alloy is 299.7KJ/mol. When pure B is replaced by FeB in preparing amorphous Fe52Co34Hf7B6Cu1 alloys, the activation energy reduced to 293.3 KJ/mol,and the soft magnetic property is decline according VSM results.


Sign in / Sign up

Export Citation Format

Share Document