Microstructural, thermal and mechanical behavior of co-sputtered binary Zr–Cu thin film metallic glasses

2014 ◽  
Vol 561 ◽  
pp. 53-59 ◽  
Author(s):  
M. Apreutesei ◽  
P. Steyer ◽  
L. Joly-Pottuz ◽  
A. Billard ◽  
J. Qiao ◽  
...  
2014 ◽  
Vol 608 ◽  
pp. 258-264 ◽  
Author(s):  
Chu-Shuan Chen ◽  
Pakman Yiu ◽  
Chia-Lin Li ◽  
Jinn P. Chu ◽  
Chan-Hung Shek ◽  
...  

2012 ◽  
Vol 706-709 ◽  
pp. 1343-1347 ◽  
Author(s):  
Takeshi Terajima

Soldering is a potential technique for joining metallic glasses. It can be performed at far below the crystallization temperature of various metallic glasses; thus, there is no possibility of crystallization. However, Cu-Zr-based metallic glass displays poor wettability to Pb-free solder, because a strong native oxide film prevents direct contact between the solder and the glass. To overcome this problem, Cu-Zr-based metallic glass clad with a thin film of Cu has been developed. This was produced by casting the melt of a Cu36Zr48Al8Ag8 pre-alloy into a Cu mold cavity, inside which a thin film of Cu with a thickness of 2 μm was placed. Cu36Zr48Al8Ag8 metallic glass was successfully formed and welded to the Cu thin film. From microstructure analysis, it was found that a reaction layer was formed at the interface between the Cu and the Cu36Zr48Al8Ag8 metallic glass. However, no oxide layer was observed in the Cu-clad layer. It was found that the Cu cladding played an important role in preventing the formation of the surface oxide film. Consequently, solderability to the Cu-Zr-based metallic glass was drastically improved.


2015 ◽  
Vol 619 ◽  
pp. 284-292 ◽  
Author(s):  
M. Apreutesei ◽  
P. Steyer ◽  
A. Billard ◽  
L. Joly-Pottuz ◽  
C. Esnouf

2013 ◽  
Vol 284-287 ◽  
pp. 94-97
Author(s):  
Kuan Jung Chung ◽  
Chi Feng Lin ◽  
W. C. Chiang

The objective of this study is to investigate the mechanical behavior of copper thin film with different thicknesses subjected to varying strain rates. A micro-force tensile testing machine (MTS Tytron 250) was used to test the polyimide samples coated with different thicknesses of copper (500 nm, 750 nm, 1000 nm, and 1500 nm). The experiments were conducted by applying test vehicles to different strain rates (1.6×10-4s-1, 1.6×10-3s-1, and 1.6×10-2s-1). The experimental results showed the strain rate and the thickness have obvious influence upon the mechanical properties of Cu thin film. The yield stress increases as increasing the strain rate or decreasing the thickness of Cu film. For considering the strain rate sensitivity m, the strain rate sensitivity m is found that it increases as decreasing the thickness to imply that Cu film has high strain-rate response at low thickness.


2021 ◽  
pp. 102547
Author(s):  
Oleksandr Glushko ◽  
Christoph Gammer ◽  
Lisa-Marie Weniger ◽  
Huaping Sheng ◽  
Christian Mitterer ◽  
...  

2005 ◽  
Vol 297-300 ◽  
pp. 521-526
Author(s):  
Insu Jeon ◽  
Masaki Omiya ◽  
Hirotsugu Inoue ◽  
Kikuo Kishimoto ◽  
Tadashi Asahina

A new specimen is proposed to measure the interfacial toughness between the Al-0.5%Cu thin film and the Si substrate. The plain and general micro-fabrication processes are sufficient to fabricate the specimen. With the help of the finite element method and the concepts of the linear elastic fracture mechanics, the detailed structure for this specimen is modeled and evaluated. The results obtained from this research show that the proposed specimen provides efficient and convenient method to measure the interfacial toughness between the Al-Cu thin film and the Si substrate.


Sign in / Sign up

Export Citation Format

Share Document