Effect of Strain Rates on the Mechanical Behavior of Cu Thin Films of Various Thicknesses

2013 ◽  
Vol 284-287 ◽  
pp. 94-97
Author(s):  
Kuan Jung Chung ◽  
Chi Feng Lin ◽  
W. C. Chiang

The objective of this study is to investigate the mechanical behavior of copper thin film with different thicknesses subjected to varying strain rates. A micro-force tensile testing machine (MTS Tytron 250) was used to test the polyimide samples coated with different thicknesses of copper (500 nm, 750 nm, 1000 nm, and 1500 nm). The experiments were conducted by applying test vehicles to different strain rates (1.6×10-4s-1, 1.6×10-3s-1, and 1.6×10-2s-1). The experimental results showed the strain rate and the thickness have obvious influence upon the mechanical properties of Cu thin film. The yield stress increases as increasing the strain rate or decreasing the thickness of Cu film. For considering the strain rate sensitivity m, the strain rate sensitivity m is found that it increases as decreasing the thickness to imply that Cu film has high strain-rate response at low thickness.

2021 ◽  
Vol 250 ◽  
pp. 05014
Author(s):  
Puneeth Jakkula ◽  
Georg Ganzenmüller ◽  
Florian Gutmann ◽  
Stefan Hiermaier

This work investigates the strain rate sensitivity of the aluminiummagnesium-scandium alloy Scalmalloy, which is used extensively for additive manufacturing of lightweight structures. This high strength aluminium alloy combines very good weldability, machinability and mechanical strength: it can be heat-treated to reach nominal ultimate tensile strengths in excess of 500 MPa. We report tensile tests at strain rates ranging from 10−3 /s to 103 /s at room temperature. It is well known that Al-Mg alloys exhibit a negative strain rate dependency in combination with serrated flow caused by the Portevin-Le Chatelier effect, which describes the interaction of Mg solutes with dislocation propagations. In contrast, in Al-Sc alloys, the flow stress increases with increasing strain rate and displays positive strain rate dependency. Additionally, the presence of Sc in the form of Al3-Sc provides a fine-grained microstructure which allows higher tensile and fatigue strength. This research shows how these combined effects interact in the case of Scalmalloy, which contains both Mg and Sc. Tests are performed at quasi-static, intermediate and high strain rates with a servohydraulic testing machine and a Split-Hopkinson tension bar. Local specimen strain was performed using 2D Digital Image Correlation.


Author(s):  
Jaecheol Yun ◽  
Van Luong Nguyen ◽  
Jungho Choe ◽  
Dong-yeol Yang ◽  
Hak-sung Lee ◽  
...  

Using nanoindentation under various strain rates, the mechanical properties of a selective laser melted (SLM) SKD61 at the 800 mm/s scan speed was investigated and compared to SLM H13. No obvious pile-up due to the ratio of the residual depth (hf) and the maximum depth (hmax) being lower than 0.7 and no cracking were observed on any of the indenter surfaces. The nanoindentation strain-rate sensitivity (m) of SLM SKD61 was found to be 0.034, with hardness increasing from 8.65 GPa to 9.93 GPa as the strain rate increased between 0.002 s−1 and 0.1 s−1. At the same scan speed, the m value of SLM H13 (m = 0.028) was lower than that of SLM SKD61, indicating that the mechanical behavior of SLM SKD61 was more critically affected by the strain rate compared to SLM H13. SLM processing for SKD61therefore shows higher potential for advanced tool design than for H13.


2013 ◽  
Vol 37 (3) ◽  
pp. 861-871 ◽  
Author(s):  
Kuan-Jung Chung ◽  
Chi-Feng Lin ◽  
Wei-Cheng Chiang

In this study, a micro-force tensile testing machine (MTS Tytron 250) was applied to test the polyimide samples coated with different thicknesses of copper (500–1500 nm). The experiments using different strain rates (1.6 × 10−4 to 1.6 × 10−2 s−1) were conducted to the test vehicles. The results showed that the stress and strain of Cu films were strongly correlated with the strain rate and film thickness. The mechanical strength, yield stress, Young’s modulus, and maximum tensile stress, increase as the strain rate increases or the thickness decreases. Strain rate sensitivity rapidly increases as the thickness decreases from 750 to 500 nm to imply that the workhardening rate increases while the thickness decreases, resulting in a higher probability of brittle failure.


2012 ◽  
Vol 585 ◽  
pp. 412-416
Author(s):  
Nilamber K. Singh ◽  
Maloy K. Singha ◽  
Ezio Cadoni ◽  
Narinder K. Gupta

An experimental investigation on the strain rate sensitivity of die steel (D3) has been presented in this paper at different rates (0.001-2500s-1) of uni-axial compression. Quasi-static tests (0.001s-1) of the material are conducted on universal testing machine (UTM), whereas, the experiments at high strain rates are performed on split Hopkinson pressure bar (SHPB) apparatus. The effects of gauge length of the specimen on the material properties of the material are studied at different strain rates. The material parameters of existing Cowper-Symonds and Johnson-Cook material models are determined and the suitability of the models is examined.


2006 ◽  
Vol 503-504 ◽  
pp. 31-36 ◽  
Author(s):  
Johannes Mueller ◽  
Karsten Durst ◽  
Dorothea Amberger ◽  
Matthias Göken

The mechanical properties of ultrafine-grained metals processed by equal channel angular pressing is investigated by nanoindentations in comparison with measurements on nanocrystalline nickel with a grain size between 20 and 400 nm produced by pulsed electrodeposition. Besides hardness and Young’s modulus measurements, the nanoindentation method allows also controlled experiments on the strain rate sensitivity, which are discussed in detail in this paper. Nanoindentation measurements can be performed at indentation strain rates between 10-3 s-1 and 0.1 s-1. Nanocrystalline and ultrafine-grained fcc metals as Al and Ni show a significant strain rate sensitivity at room temperature in comparison with conventional grain sized materials. In ultrafine-grained bcc Fe the strain rate sensitivity does not change significantly after severe plastic deformation. Inelastic effects are found during repeated unloading-loading experiments in nanoindentations.


2019 ◽  
Vol 2019 (1) ◽  
pp. 000480-000487
Author(s):  
Luke A. Wentlent ◽  
James Wilcox ◽  
Xuanyi Ding

Abstract As the electronics industry continues to evolve a concerted effort has developed to implement lower melting point solders. The ability to minimize the thermal exposure that an assembly is subjected to affords significant benefits with respect to both the reliability and the materials that can be used. One of the most popular low melt solder alloys currently being investigated by the industry is the Bi-Sn eutectic system, which has a melting point of 139°C. The BiSn system itself is not particularly novel as it was posited as a SAC alternative during the initial shift from Pb based solders. While a body of knowledge currently exists regarding this system, and the near eutectic variant BiSnAg, there are still concerns regarding its ductility, especially as a function of thermal exposure and strain rate. Bismuth is widely acknowledged as a brittle element and its presence in such quantities raises concerns of not just Cu6Sn5 embrittlement but also solder fragility in high strain rate types of environments. A challenge with regards to near term implementation is that most packages are not available with BiSn solder bumps. Therefore, it will be necessary to use components already balled with SAC 305 solder. This means that the resulting solder interconnect, reflowed below conventional SAC reflow temperatures, will form a type of mixed hybrid microstructure. This non-equilibrium microstructure will be composed of two regions, one Bi-rich region which is well past saturation and a second region which is Bi-deficient. It is of specific industrial interest then to not just investigate the BiSn solder system but also within the context of a realistic mixed interconnect. Recent work by several researchers has shown that this hybrid microstructure is unstable and quite active with respect to the movement and localized concentration of the Bismuth. The degree of mixing of these two regions has been shown to be highly dependent upon reflow temperature and the paste to ball volume ratio. Mixed SAC-BiSn solder joints were formed by placing SAC 305 spheres on BiSn paste deposits for a paste to ball volume ratio of .18. These samples were then reflowed at either 175°C or 200°C. SAC 305 control samples were also made using a conventional Pb-free reflow profile with a peak temperature of 247°C. A 22 mil Cu-OSP pad on a 1.0 mm thick FR4 substrate was used for all samples. A selection of the solder joints were then isothermally aged at 90°C for 200 hours. Using a joint level micromechanical tester, ball shear tests were conducted at a range of strain rates for samples in the as-reflowed and aged state. Using this information, the strain rate sensitivity of the interconnects was mapped and correlated with the observed failure modes. Investigations into the fracture mechanisms were conducted by examining the shear fracture surface with optical and scanning electron microscopy. Additionally, the evolution of the microstructure was characterized. Results showed a clear transition from ductile solder failure to a brittle separation failure at the higher strain rates.


Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 344 ◽  
Author(s):  
Simon Sevsek ◽  
Christian Haase ◽  
Wolfgang Bleck

The strain-rate-dependent deformation behavior of an intercritically annealed X6MnAl12-3 medium-manganese steel was analyzed with respect to the mechanical properties, activation of deformation-induced martensitic phase transformation, and strain localization behavior. Intercritical annealing at 675 °C for 2 h led to an ultrafine-grained multi-phase microstructure with 45% of mostly equiaxed, recrystallized austenite and 55% ferrite or recovered, lamellar martensite. In-situ digital image correlation methods during tensile tests revealed strain localization behavior during the discontinuous elastic-plastic transition, which was due to the localization of strain in the softer austenite in the early stages of plastic deformation. The dependence of the macroscopic mechanical properties on the strain rate is due to the strain-rate sensitivity of the microscopic deformation behavior. On the one hand, the deformation-induced phase transformation of austenite to martensite showed a clear strain-rate dependency and was partially suppressed at very low and very high strain rates. On the other hand, the strain-rate-dependent relative strength of ferrite and martensite compared to austenite influenced the strain partitioning during plastic deformation, and subsequently, the work-hardening rate. As a result, the tested X6MnAl12-3 medium-manganese steel showed a negative strain-rate sensitivity at very low to medium strain rates and a positive strain-rate sensitivity at medium to high strain rates.


2018 ◽  
Vol 385 ◽  
pp. 131-136
Author(s):  
Vitaliy Sokolovsky ◽  
Nikita Stepanov ◽  
Sergey Zherebtsov ◽  
Nadezhda Nochovnaya ◽  
Pavel Panin ◽  
...  

Mechanical behavior and microstructure evolution of the cast Ti-43.2Al-1.9V-1.1Nb-1.0Zr-0.2Gd-0.2B alloy were studied at temperatures from 1100 to 1250°С and strain rates in the range 0.001-1 s-1. Following phase fields (α2+γ), (α+γ), (α) and (α+β) during heating of alloy were revealed. Microstructure analysis after deformation and mechanical behavior allowed defining main processes of structure formation. Two temperature-strain rate conditions with pronounced superplastic behaviour were found: the first one corresponded to the (α2+γ)-phase field (1100°C), where the microstructure had mainly a lamellar morphology, and the second was associated with the (α+β)-phase field (1250°C), in which the α-phase dominated. At T=1100°C and έ=0.05 s-1the maximum strain rate sensitivitymwas of 0.40. At T=1250°C and έ=0.5 s-1the maximum strain rate sensitivitymwas of 0.59. In the (α2+γ)-phase field, superplastic behavior was associated with the transformation of the lamellar structure into globular one. In the (α+β)-phase field, it was due to the formation of a homogeneous refined microstructure during dynamic recrystallization. The relationship between coefficient m value and microstructure formed was discussed.


2019 ◽  
Vol 298 ◽  
pp. 43-51
Author(s):  
Jia Yong Si ◽  
Song Hao Liu ◽  
Long Chen

This research investigated the effect of hot extrusion on the flow behaviour of nickel-based superalloy FGH4096 by hot compression experiments in the temperature range from 1020 to 1110 °C and strain rates ranging from 0.1 to 0.001 s-1. The influence of the hot extrusion on the initial microstructures, work hardening rate, strain rate sensitivity, and activation energy of deformation were discussed. The results show that the extruded microstructure is constituted by the fine dynamic recrystallisation of grains. The true strain-true stress curves show that the as-HIPed and as-HEXed FGH4096 superalloy present double flow stress peaks and discontinuous flow softening. The as-HEXed FGH4096 is easily dynamically softened at high temperatures and high strain rates compared with as-HIPed microstructures. As for the work hardening rate, the as-HEXed FGH4096 exhibits higher θ values than that of as-HIPed. It is beneficial to the homogenous deformation and grain refinement during subsequent turbine disk forging. Comparing to as-HIPed FGH4096, the highest strain rate sensitivity value of as-HEXed is 0.306 at 1110 °C. The isothermal superplastic forging of a P/M turbine disk may be carried out at this temperature. The deformation activation energy value of the as-HIPed FGH4096 is lower which means that dislocation sliding and climbing can be easily initiated in the as-HIPed alloy.


1980 ◽  
Vol 15 (4) ◽  
pp. 201-207 ◽  
Author(s):  
M S J Hashmi

Experimental results on a mild steel are reported from ballistics tests which gave rise to strain rates of up to 105 s−1. A finite-difference numerical technique which incorporates material inertia, elastic-strain hardening and strain-rate sensitivity is used to establish the strain-rate sensitivity constants p and D in the equation, σ4 = σ1 (1+(∊/D)1/ p). The rate sensitivity established in this study is compared with those reported by other researchers.


Sign in / Sign up

Export Citation Format

Share Document