A New Specimen for Measuring the Interfacial Toughness of Al-0.5%Cu Thin Film on Si Substrate

2005 ◽  
Vol 297-300 ◽  
pp. 521-526
Author(s):  
Insu Jeon ◽  
Masaki Omiya ◽  
Hirotsugu Inoue ◽  
Kikuo Kishimoto ◽  
Tadashi Asahina

A new specimen is proposed to measure the interfacial toughness between the Al-0.5%Cu thin film and the Si substrate. The plain and general micro-fabrication processes are sufficient to fabricate the specimen. With the help of the finite element method and the concepts of the linear elastic fracture mechanics, the detailed structure for this specimen is modeled and evaluated. The results obtained from this research show that the proposed specimen provides efficient and convenient method to measure the interfacial toughness between the Al-Cu thin film and the Si substrate.

Author(s):  
Insu Jeon ◽  
Masaki Omiya ◽  
Hirotsugu Inoue ◽  
Kikuo Kishimoto ◽  
Tadashi Asahina

2007 ◽  
Vol 567-568 ◽  
pp. 225-228 ◽  
Author(s):  
Luboš Náhlík ◽  
Lucie Šestáková ◽  
Pavel Hutař

The objective of the paper is to investigate the direction of a further crack propagation from the interface between two elastic materials. The angle of crack propagation changes when the crack passes the interface. The suggested procedure makes it possible to estimate an angle of propagation under which the crack will propagate into the second material. The assumptions of linear elastic fracture mechanics and elastic behavior of the body with interfaces are considered. The finite element method was used for numerical calculations. The results obtained might contribute to a better understanding of the failure of materials with interfaces (e.g. layered composites, materials with protective coatings) and to a more reliable estimation of the service life of such structures.


1991 ◽  
Vol 44 (10) ◽  
pp. 447-461 ◽  
Author(s):  
Leslie Banks-Sills

Use of the finite element method to treat two and three-dimensional linear elastic fracture mechanics problems is becoming common place. In general, the behavior of the displacement field in ordinary elements is at most quadratic or cubic, so that the stress field is at most linear or quadratic. On the other hand, the stresses in the neighborhood of a crack tip in a linear elastic material have been shown to be square root singular. Hence, the problem begins by properly modeling the stresses in the region adjacent to the crack tip with finite elements. To this end, quarter-point, singular, isoparametric elements may be employed; these will be discussed in detail. After that difficulty has been overcome, the stress intensity factor must be extracted from either the stress or displacement field or by an energy based method. Three methods are described here: displacement extrapolation, the stiffness derivative and the area and volume J-integrals. Special attention will be given to the virtual crack extension which is employed by the latter two methods. A methodology for calculating stress intensity factors in two and three-dimensional bodies will be recommended.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
H. Pirali ◽  
F. Djavanroodi ◽  
M. Haghpanahi

In this paper a combined node searching algorithm for simulation of crack discontinuities in meshless methods called combined visibility and surrounding triangles (CVT) is proposed. The element free Galerkin (EFG) method is employed for stress analysis of cracked bodies. The proposed node searching algorithm is based on the combination of surrounding triangles and visibility methods; the surrounding triangles method is used for support domains of nodes and quadrature points generated at the vicinity of crack faces and the visibility method is used for points located on the crack faces. In comparison with the conventional methods, such as the visibility, the transparency, and the diffraction method, this method is simpler with reasonable efficiency. To show the performance of this method, linear elastic fracture mechanics analyses are performed on number of standard test specimens and stress intensity factors are calculated. It is shown that the results are in good agreement with the exact solution and with those generated by the finite element method (FEM).


2010 ◽  
Vol 63 (2) ◽  
Author(s):  
Leslie Banks-Sills

Since the previous paper was written (Banks-Sills, 1991, “Application of the Finite Element Method to Linear Elastic Fracture Mechanics,” Appl. Mech. Rev., 44, pp. 447–461), much progress has been made in applying the finite element method to linear elastic fracture mechanics. In this paper, the problem of calculating stress intensity factors in two- and three-dimensional mixed mode problems will be considered for isotropic and anisotropic materials. The square-root singular stresses in the neighborhood of the crack tip will be modeled by quarter-point, square and collapsed, triangular elements for two-dimensional problems, respectively, and by brick and collapsed, prismatic elements in three dimensions. The stress intensity factors are obtained by means of the interaction energy or M-integral. Displacement extrapolation is employed as a check on the results. In addition, the problem of interface cracks between homogeneous, isotropic, and anisotropic materials is presented. The purpose of this paper is to present an accurate and efficient method for calculating stress intensity factors for mixed mode deformation. The equations presented here should aid workers in this field to carry out similar analyses, as well as to check their calculations with respect to the examples described.


Author(s):  
Daniel Bremberg ◽  
Guido Dhondt

This paper presents a numerical concept for fatigue crack propagation computations, within the theory of the finite element method and the theory of linear elastic fracture mechanics, capable of automatic analysis of curved 3-D crack fronts and non-planar crack surfaces. The general modelling of fatigue crack growth and the present algorithm based on a remeshing technique are described. A comparison to existing analytical solutions for an embedded elliptical crack shows satisfying agreement and a fatigue crack growth analysis of a real-life component illustrates the framework applicability.


2008 ◽  
Vol 2008 (0) ◽  
pp. _OS1216-1_-_OS1216-2_
Author(s):  
Tetsuya Shishido ◽  
Yoshimasa Takahashi ◽  
Takashi Sumigawa ◽  
Takayuki Kitamura

2004 ◽  
Vol 53 (8) ◽  
pp. 846-849 ◽  
Author(s):  
Masataka HASEGAWA ◽  
Shigenori SUZUKI ◽  
Shoji KAMIYA ◽  
Masumi SAKA
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document