Morphological differences in transparent conductive indium-doped zinc oxide thin films deposited by ultrasonic spray pyrolysis

2014 ◽  
Vol 571 ◽  
pp. 114-120 ◽  
Author(s):  
Samerkhae Jongthammanurak ◽  
Tinnaphob Cheawkul ◽  
Maetapa Witana
Author(s):  
Shao-Yi Lee ◽  
Wen-How Lan ◽  
Wei-Min Chao ◽  
Chun-Wei Tsai ◽  
Ming-Chang Shih ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6879
Author(s):  
Tangirala Venkata Krishna Karthik ◽  
María de la Luz Olvera ◽  
Arturo Maldonado ◽  
Rajesh Roshan Biswal ◽  
Heberto Gómez-Pozos

Undoped and nickel-doped zinc oxide thin films were deposited on sodalime glass substrates by utilizing dip coating and ultrasonic spray pyrolysis deposition techniques. In both cases zinc acetate and nickel acetylacetonate were used as zinc precursor and nickel dopant source, respectively. XRD analysis confirms the ZnO wurtzite structure with (002) as the preferential orientation.SEM studies show the formation of two types of morphologies, primarily a porous spherical grains with a grain size distribution from 40 to 150 nm and another, rose-like structures with size distribution from 30 to 200 nm, based on different deposition techniques utilized. The elemental depth profiles across the films were investigated by the secondary-ion mass spectrometry (SIMS). Different gas sensing responses of all ZnO films were obtained for both propane and carbon monoxide gases, at different gas concentrations and operating temperatures. The highest sensing response (~6) for undoped ZnO films was obtained for films deposited by ultrasonic spray pyrolysis (USP). Nevertheless, the highest sensing response (~4 × 104) for doped ZnO films was obtained for films deposited by dip coating method. The behavior of sensing responses is explained in detail based on the morphological properties and the amount of Ni impurities incorporated into the crystal lattice.


Sign in / Sign up

Export Citation Format

Share Document