zinc tin oxide
Recently Published Documents


TOTAL DOCUMENTS

426
(FIVE YEARS 88)

H-INDEX

41
(FIVE YEARS 5)

Author(s):  
Emanuel Carlos ◽  
Rita Branquinho ◽  
Elina Jansson ◽  
Jaakko H Leppaniemi ◽  
José Menezes ◽  
...  

Abstract Printed metal oxide devices have been widely desired in flexible electronic applications to allow direct integration on foils and to reduce electronic waste and associated costs. Especially, semiconductor devices made from non-critical raw materials, such as Zn, Sn (and not, for example, In), have gained much interest. Despite considerable progress in the field, the upscale requirements from lab to fab scale to produce these materials and devices remain a challenge. In this work, we report the importance of solution combustion synthesis (SCS) when compared with sol-gel in the production of zinc tin oxide (ZTO) thin films using a solvent (1-methoxypropanol) that has lower environmental impact than the widely used and toxic 2-methoxyethanol. To assure the compatibility with low-cost flexible substrates in high-throughput printing techniques, a low annealing temperature of 140 ºC was achieved for these thin films by combining SCS and infrared (IR) annealing in a short processing time. These conditions allowed the transition from spin-coating (lab scale) to flexographic printing (fab scale) at a printing speed of 10 m/min in a roll-to-roll (R2R) pilot line. The ZTO (1:1 Zn:Sn-ratio) diodes show a rectification ratio of 103, a low operation voltage (≤ 3 V), promising reproducibility and low variability. The results provide the basis for further optimization (device size, encapsulation) to meet the requirements of diodes in flexible electronics applications such as passive-matrix addressing, energy harvesting and rectification.


2021 ◽  
Vol 2 ◽  
Author(s):  
Oliver Lahr ◽  
Max Steudel ◽  
Holger von Wenckstern ◽  
Marius Grundmann

Due to their low-temperature processing capability and ionic bonding configuration, amorphous oxide semiconductors (AOS) are well suited for applications within future mechanically flexible electronics. Over the past couple of years, amorphous zinc tin oxide (ZTO) has been proposed as indium and gallium-free and thus more sustainable alternative to the widely deployed indium gallium zinc oxide (IGZO). The present study specifically focuses on the strain-dependence of elastic and electrical properties of amorphous zinc tin oxide thin-films sputtered at room temperature. Corresponding MESFETs have been compared regarding their operation stability under mechanical bending for radii ranging from 5 to 2 mm. Force-spectroscopic measurements yield a plastic deformation of ZTO as soon as the bending-induced strain exceeds 0.83 %. However, the electrical properties of ZTO determined by Hall effect measurements at room temperature are demonstrated to be unaffected by residual compressive and tensile strain up to 1.24 %. Even for the maximum investigated tensile strain of 1.26 %, the MESFETs exhibit a reasonably consistent performance in terms of current on/off ratios between six and seven orders of magnitude, a subthreshold swing around 350 mV/dec and a field-effect mobility as high as 7.5 cm2V−1s−1. Upon gradually subjecting the transistors to higher tensile strain, the channel conductivity steadily improves and consequently, the field-effect mobility increases by nearly 80 % while bending the devices around a radius of 2 mm. Further, a reversible threshold voltage shift of about −150 mV with increasing strain is observable. Overall, amorphous ZTO provides reasonably stable electrical properties and device performance for bending-induced tensile strain up to at least 1.26 % and thus represent a promising material of choice considering novel bendable and transparent electronics.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2633
Author(s):  
Jun Young Choi ◽  
In Pyo Park ◽  
Soo Won Heo

We have developed a novel structure of ultra-flexible organic photovoltaics (UFOPVs) for application as a power source for wearable devices with excellent biocompatibility and flexibility. Parylene was applied as an ultra-flexible substrate through chemical vapor deposition. Indium-zinc-tin oxide (IZTO) thin film was used as a transparent electrode. The sputtering target composed of 70 at.% In2O3-15 at.% ZnO-15 at.% SnO2 was used. It was fabricated at room temperature, using pulsed DC magnetron sputtering, with an amorphous structure. UFOPVs, in which a 1D grating pattern was introduced into the hole-transport and photoactive layers were fabricated, showed a 13.6% improvement (maximum power conversion efficiency (PCE): 8.35%) compared to the reference device, thereby minimizing reliance on the incident angle of the light. In addition, after 1000 compression/relaxation tests with a compression strain of 33%, the PCE of the UFOPVs maintained a maximum of 93.3% of their initial value.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Soumen Dhara ◽  
Kham M. Niang ◽  
Andrew J. Flewitt ◽  
Arokia Nathan ◽  
Stephen A. Lynch

AbstractWe report on the appearance of a strong persistent photoconductivity (PPC) and conductor-like behaviour in zinc tin oxide (ZTO) thinfilm phototransistors. The active ZTO channel layer was prepared by remote plasma reactive sputtering and possesses an amorphous structure. Under sub-bandgap excitation of ZTO with UV light, the photocurrent reaches as high as ~ 10−4 A (a photo-to-dark current ratio of ~ 107) and remains close to this high value after switching off the light. During this time, the ZTO TFT exhibits strong PPC with long-lasting recovery time, which leads the appearance of the conductor-like behaviour in ZTO semiconductor. In the present case, the conductivity changes over six orders of magnitude, from ~ 10−7 to 0.92/Ω/cm. After UV exposure, the ZTO compound can potentially remain in the conducting state for up to a month. The underlying physics of the observed PPC effect is investigated by studying defects (deep states and tail states) by employing a discharge current analysis (DCA) technique. Findings from the DCA study reveal direct evidence for the involvement of sub-bandgap tail states of the ZTO in the strong PPC, while deep states contribute to mild PPC.


Sign in / Sign up

Export Citation Format

Share Document