1-g shaking table tests of precast horseshoe segmental tunnel: Experimental design, dynamic properties, deformation mode and damage pattern

2021 ◽  
Vol 113 ◽  
pp. 103976
Author(s):  
Chengshun Xu ◽  
Zhiwei Jiang ◽  
Xiuli Du ◽  
Yiyao Shen ◽  
Su Chen
2021 ◽  
pp. 1-54
Author(s):  
A.M. Safaee ◽  
A. Mahboubi ◽  
A. Noorzad

Improving the characteristics of local low-strength soils at the construction site is one of the appropriate approaches to employ the soils as a backfill of geogrid reinforced soil (GRS) walls. In this study, the fiber-cement-treated sand-silt mixture was used as the backfill of walls. The post-earthquake performance of the walls was evaluated by applying the sinusoidal waves on 1-m high reduced-scale physical models and conducting a series of 1-g shaking table tests. A comparison of the wall models constructed with treated and untreated backfill indicated the advantages of geogrid-reinforced fiber-cement-treated soil walls subjected to strong ground motion. The results revealed the better behavior of the wall models backfilled with treated soil mixtures under dynamic loading. Such improved performance was more evident in (1) deformation responses, including the lateral displacement of wall facing, deformation mode, failure surfaces, and settlement of backfill surface and (2) acceleration response in different locations, including facing, reinforced, and retained zone of walls.


2017 ◽  
Vol 21 (10) ◽  
pp. 1421-1436 ◽  
Author(s):  
Viktor Hristovski ◽  
Violeta Mircevska ◽  
Bruno Dujic ◽  
Mihail Garevski

Cross-laminated timber has recently gained great popularity in earthquake-prone areas for construction of residential, administrative, and other types of buildings. At the Laboratory of the Institute of Earthquake Engineering and Engineering Seismology in Skopje, comparative full-scale shaking-table tests of cross-laminated timber panel systems have been carried out as a part of the full research program on the seismic behavior of these types of wooden systems, realized by Institute of Earthquake Engineering and Engineering Seismology, Skopje, and the Faculty of Civil and Geodetic Engineering (UL FCG), University of Ljubljana. Two different specimens built of cross-laminated timber panels have been tested: specimen containing a pair of single-unit principal wall elements (Specimen 1) and specimen containing a pair of two-unit principal wall elements (Specimen 2). In this article, the results from the shaking-table tests obtained for Specimen 2 and numerically verified by using appropriate finite element method–based computational model are discussed. Reference is also made to the comparative analysis of the test results obtained for both specimens. One of the most important aspects of the research has been the estimation of the seismic energy-dissipation ability of Specimen 1 and 2, via calculation of the equivalent viscous damping using the performed experimental tests. It is generally concluded that Specimen 2 exhibits a similar rocking behavior as Specimen 1, with similar energy-dissipation ability. Both specimens have manifested slightly different dynamic properties, mostly because Specimen 2 has been designed with one anchor more compared to Specimen 1. Forced vibration tests have been used for identification of the effective stiffness on the contacts for Specimen 2. This research is expected to be a contribution toward clarification of the behavior and practical design of cross-laminated timber panel systems subjected to earthquake loading.


2014 ◽  
Vol 20 (45) ◽  
pp. 539-544
Author(s):  
Toshiaki SATO ◽  
Takenori HIDA ◽  
Jun KATO ◽  
Michio IGUCHI ◽  
Yuichi MASAKI ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Liang Li ◽  
Guoqiang Li ◽  
Tianhua Zhou

The damage to a concrete wall caused by a strong earthquake is generally concentrated at the bottom of the concrete wall, which seriously threatens the safety of the steel-concrete hybrid structure and is very difficult to repair after an earthquake. In this paper, a steel-concrete hybrid structure with buckling restrained braces at a scale of 1/10 is constructed and tested on a shaking table. First, the mechanical properties of the BRBs are obtained through a static reciprocating loading test. Then, the dynamic properties and seismic response of the steel-concrete hybrid structure with BRBs are obtained through shaking table tests. The results show that (1) the energy dissipation capacity of the BRBs is very good, and none of the BRBs buckle during the shaking table tests; (2) the steel beams and columns are basically in an elastic state; (3) all the cracks on the concrete wall are microcracks, which are widely distributed in floors 1–8 of the concrete walls; (4) the maximum interstory drift angle reaches 1/40, which indicates that the ductility of the steel-concrete hybrid structure is very good. In conclusion, BRBs can significantly improve the seismic performance of the steel-concrete hybrid structures.


2021 ◽  
Vol 146 ◽  
pp. 106675
Author(s):  
Anastasios Tsiavos ◽  
Anastasios Sextos ◽  
Andreas Stavridis ◽  
Matt Dietz ◽  
Luiza Dihoru ◽  
...  

2021 ◽  
Vol 242 ◽  
pp. 112517
Author(s):  
Hanyun Zhang ◽  
Cai Jiang ◽  
Shuming Liu ◽  
Liaojun Zhang ◽  
Chen Wang ◽  
...  

2021 ◽  
Vol 109 ◽  
pp. 103775
Author(s):  
Xuanming Ding ◽  
Yanling Zhang ◽  
Qi Wu ◽  
Zhixiong Chen ◽  
Chenglong Wang

Sign in / Sign up

Export Citation Format

Share Document