Elastic buckling of an axially compressed sandwich cylindrical panel with three edges simply supported and one edge free

2006 ◽  
Vol 44 (8) ◽  
pp. 910-918 ◽  
Author(s):  
W. Szyc ◽  
Z. Laszczyk ◽  
K. Magnucki
1986 ◽  
Vol 53 (1) ◽  
pp. 135-140 ◽  
Author(s):  
R. H. Plaut ◽  
L. W. Johnson

Thin, shallow, elastic, cylindrical panels with rectangular planform are considered. We seek the midsurface form which maximizes the fundamental frequency of vibration, and the form which maximizes the buckling value of a uniform axial load. The material, surface area, and uniform thickness of the panel are specified. The curved edges are simply supported, while the straight edges are either simply supported or clamped. For the clamped case, the optimal panels have zero slope at the edges. In the examples, the maximum fundamental frequency is up to 12 percent higher than that of the corresponding circular cylindrical panel, while the buckling load is increased by as much as 95 percent. Most of the solutions are bimodal, while the rest are either unimodal or trimodal.


2002 ◽  
Vol 02 (02) ◽  
pp. 151-161 ◽  
Author(s):  
C. M. WANG ◽  
Y. XIANG ◽  
C. Y. WANG

This paper is concerned with the elastic buckling problem of vertical plates under body forces/selfweight. The vertical plate is either clamped or simply supported at its bottom edge while its top edge is free. The two sides of the plate may either be free, simply supported or clamped. For plates with simply supported sides, exact critical buckling solutions are derived using the Levy approach. For other boundary conditions, accurate buckling solutions are obtained for very wide plates to very tall plates using the Ritz method.


1957 ◽  
Vol 24 (3) ◽  
pp. 405-412
Author(s):  
N. J. Hoff

Abstract The buckling of a thin cylindrical shell simply supported along the perimeter of its end sections is analyzed under hoop compressive stresses varying in the axial direction. The thermal stresses arising from a uniform increase in the temperature of the cylinder are determined. It is found that such thermal stresses are not likely to cause elastic buckling. Simple approximate formulas are developed for buckling stress and thermal stress.


Author(s):  
A Alibeigloo ◽  
M Shakeri

Three-dimensional elasticity solutions have been presented for thick laminated crossply circular cylindrical panel. The panel is under localized patch moment in axial direction and is simply supported at all edges with finite length. Ordinary differential equations with variable coefficients are obtained by means of Fourier series expansion for displacement field and loading in the circumferential and axial directions. Resulting ordinary differential equations are solved using Taylor series. Numerical results are presented for (0/90°) and (0/90/0°) lay-up, and compared with the results for simple form of loading published in literatures.


1991 ◽  
Vol 113 (4) ◽  
pp. 396-403 ◽  
Author(s):  
K. W. Shahwan ◽  
A. M. Waas

The results of an analytical study on the elastic buckling of long narrow orthotropic plates resting on a tensionless foundation are reported. The motivation for the present study stems from the importance of delamination buckling as a viable mode of failure in fibrous laminated composites. When near surface delaminations undergo buckling, the buckled displacements are of one sign, because the remainder of the laminate (parent sublaminate) essentially acts like a rigid foundation. The results of the present study can be incorporated into developing delamination growth models for various loading conditions. Example results are presented for five different types of plates where one is of the isotropic type and the remaining four are of the laminated orthotropic type. Example results for two types of Graphite/Epoxy material systems (IM7/8551-7 and T300/BP907) are reported. In the laminates considered, the stacking is sequenced so that the bending constitutive constants D16 and D26 vanish. Extensive parametric analysis was performed and it was found that for the case of a simply supported plate and in the limiting case of a rigid foundation, conforming to buckled displacements of one sign, the increase in the buckling load over that of a simply supported plate but with no foundation varies between 22 and 33 percent, depending on the plate stacking sequence. On the other hand, for the clamped-free case this number was found to vary between 24 and 36 percent for all types of materials used in this study. Previous studies that addressed similar issues did not pay particular attention to the one sided buckling constraint that is placed due to physical considerations.


1956 ◽  
Vol 23 (2) ◽  
pp. 207-213
Author(s):  
Bertram Klein

Abstract Design curves are presented for determining the elastic buckling loads of simply supported flat plates of isosceles trapezoidal planform and loaded in compression along the parallel edges. Shear loads are assumed to act along the sloping edges so that any ratio of axial loads may act along the parallel edges of the given plate. Isosceles triangular plates are included as a special limiting case, and the range of the values of the various geometric and load parameters presented in the curves is considered large enough to cover practically all conditions of the type treated which are encountered in practice.


Sign in / Sign up

Export Citation Format

Share Document