Major-axis elastic buckling of axially loaded castellated steel columns

2009 ◽  
Vol 47 (11) ◽  
pp. 1295-1304 ◽  
Author(s):  
Khaled M. El-Sawy ◽  
Amr M.I. Sweedan ◽  
Mohamed I. Martini
2021 ◽  
Vol 234 ◽  
pp. 111733 ◽  
Author(s):  
Mu-Zi Zhao ◽  
Yu-Yin Wang ◽  
Dawn E. Lehman ◽  
Yue Geng ◽  
Charles W. Roeder

2020 ◽  
Vol 15 (2) ◽  
pp. 203-2016
Author(s):  
Leonardo Carvalho Mesquita ◽  
Arthur Filipe Freire Gomes ◽  
Filipe Silveira Leão

RESUMO: Este trabalho teve como objetivo simular computacionalmente o comportamento estrutural de pilares de aço submetidos à compressão axial e avaliar a influência das imperfeições geométricas e de materiais (tensões residuais) sobre a capacidade resistente destes elementos. Para isso, desenvolveu-se, com auxílio do software Abaqus, modelos computacionais de elementos finitos que foram analisados em duas etapas, a primeira correspondente a uma análise de flambagem elástica (Buckle) e a segunda a uma análise não-linear plástica (Static Ricks). Os resultados obtidos pelos modelos desenvolvidos foram comparados com os resultados apresentados pela equação de flambagem elástica proposta por Euler e pela curva de flambagem prescrita pela ABNT NBR 8800:2008. De forma geral, os resultados computacionais se aproximaram dos valores de referência, o que indica que os modelos computacionais conseguiram simular o comportamento estrutural de um pilar real e que a metodologia proposta é válida. Ao analisar a influência das imperfeições geométricas observou-se que os modelos com imperfeições de L/1000 e L/1500 foram os que mais se aproximaram dos valores de referência. No caso das imperfeições de materiais, os modelos com 10% e 15% de tensões residuais foram os que mais se aproximaram. Desta forma, as estratégias adotadas podem contribuir para futuras pesquisas relacionadas à flambagem de pilares de aço submetidos à compressão axial. ABSTRACT: This research aimed to simulate the structural behavior of steel columns subjected to axial compression and to evaluate the influence of geometric and material imperfections (residual stresses) on the strength of these elements. In order to achieve this aim, finite element computational models were developed using Abaqus, which were analyzed in two stages: an elastic buckling analysis (Buckle) and a nonlinear plastic analysis (Static Ricks). The results obtained were compared with the results presented by the elastic buckling equation proposed by Euler and the buckling curve prescribed by ABNT NBR 8800: 2008. In general, the results obtained were very close if compared to the reference values. It indicates that the computational models were able to simulate the structural behavior of a real pillar and that the proposed methodology is valid. When analyzing the influence of the geometric imperfections, it was observed that the models with imperfections of L/1000 and L/1500 were the ones that most approached the expected results. In the case of material imperfections, the models with 10% and 15% of residual stresses were the ones that presented the best results. In this way, the adopted strategies may contribute to future research related to the structural behavior of columns and buckling.


1996 ◽  
Vol 23 (1) ◽  
pp. 272-276 ◽  
Author(s):  
Robert Loov

Clause 13.3 of the Canadian Standards Association Standard CAN/CSA-S16.1-M89 "Limit states design of steel structures" utilizes complex five-piece curves to specify the limiting capacity of axially loaded steel columns. A study of these equations shows that they do not fit smoothly together. The resulting curves are scalloped. It has been found that the five-piece curves can be replaced by one continuous equation which never deviates by more than approximately 3% from the S16.1-M89 values. The proposed equation is applicable to all three column curves of the Structural Stability Research Council with only a change in the value of the exponent. The proposed equation has been adopted in the recently published CAN/CSA-S16.1-94 standard. Key words: axial loads, columns, inelastic analysis, steel columns.


2011 ◽  
Vol 121-126 ◽  
pp. 340-345
Author(s):  
Behzad Abdi ◽  
Hamid Mozafari ◽  
Ayob Amran ◽  
Roya Kohandel

In this study, the elastic buckling behavior of general dome ends under presumed temperature distribution and external pressure was studied. The Finite Element Method (FEM) was used to predict the elastic buckling pressure behavior when the domes were subjected to various operating temperatures. The freedom of the edges of the dome ends was completely restricted to simulate clamped end conditions. The four-centered ellipse method was used to construct the geometry of the dome ends. The influence of geometrical parameters such as thickness, knuckle radius, and the ratio of minor axis to the major axis of dome ends and the effect of temperature on critical buckling pressure of hemispherical, ellipsoidal, and torispherical dome ends were studied. It has been found that the under thermal condition, the thickness and the shape of the domes have the most significant effect on the critical buckling pressure. Two models of torispherical and ellipsoidal dome ends are analyzed by using finite element analysis.


2013 ◽  
Vol 62 ◽  
pp. 690-701 ◽  
Author(s):  
Weiyong Wang ◽  
Yoshifumi Ohmiya ◽  
Gaofeng Ma

Sign in / Sign up

Export Citation Format

Share Document