Numerical Study of Behavior of Axially Loaded Steel Columns Subjected to Transverse Impact

Author(s):  
AL-Thairy H. ◽  
Wang Y.
2019 ◽  
Vol 140 ◽  
pp. 99-113 ◽  
Author(s):  
Majid M.A. Kadhim ◽  
Zhangjian Wu ◽  
Lee S. Cunningham

2021 ◽  
Vol 234 ◽  
pp. 111733 ◽  
Author(s):  
Mu-Zi Zhao ◽  
Yu-Yin Wang ◽  
Dawn E. Lehman ◽  
Yue Geng ◽  
Charles W. Roeder

2019 ◽  
Vol 10 (2) ◽  
pp. 138-154
Author(s):  
Farshid Masoumi ◽  
Ebrahim Farajpourbonab

Purpose The primary purpose of this research was to expand the knowledge base regarding the behavior of steel columns during exposure to fire. This paper presents the numerical study of the effect of heat on the performance of parking steel column in a seven-story steel building under cyclic loading. Design/methodology/approach In this research, the forces and deformations developed during a fire are estimated by using detailed 3D finite-element models. The analyses are in the form of a coupled thermo-mechanical analysis in two types of loading: concurrent loading (fire and cyclic loading) and non-concurrent loading (first fire and then cyclically), and the analyses have been conducted in both states of the fire loading with cooling and without cooling using the ABAQUS software. Further, it was investigated whether, during the fire loading, the specimen was protected by a 3-cm-thick concrete coating and how much it changes the seismic performance. After verification of the specimen with the experimental test results, the column model was investigated under different loading conditions. Findings The result of analyses indicates that the effect of thermal damage on the performance of steel columns, when cooling is happening late, is more than the state in which cooling occurs immediately after the fire. In this paper, thermal–seismic performance of parking steel columns has been specified and the effect of the fire damage has been investigated for the protected steel by concrete coating and to the non-protected steel, under both cooling and non-cooling states. Originality/value This study led to recommendations based on the findings and suggestions for additional work to support performance-based fire engineering. It is clear that predicting force and deformation on steel column during fire is complex and it is affected by many variables. Here in this paper, those variables are examined and proper results have been achieved.


Author(s):  
Faycal Ben-Yahia ◽  
James A. Nemes ◽  
Farid Hassani

An experimental and numerical study was performed to evaluate the crashworthiness of several advanced high strength steels. The behavior of two Dual Phase (DP) steels and an HSLA steel are compared by examining the crush response of longeron column specimens, experimentally and computationally. The closed section columns, fabricated by spot welding formed channel sections, in both single hat and double hat configurations were exposed to 182 kg and 454 kg axial impacts at different velocities. Final column height and impact force history were recorded and compared with results of finite element simulation of the columns. Good agreement was found between experiments and computations.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 813
Author(s):  
Kyra Kamille Toledo ◽  
Hyoung-Seok Kim ◽  
Young-Soo Jeong ◽  
In-Tae Kim

Corrosion is considered as one of the main factors in the structural performance deterioration of steel members. In this study, experimental and numerical methods were used to assess the reduction in compressive strength of short tubular steel columns with artificially fabricated local corrosion damage. The corrosion damage was varied with different depths, heights, circumferences, and locations along the column. A parametric numerical study was performed to establish a correlation between the residual compressive strength and the severity of corrosion damage. The results showed that as the corrosion depth, height and circumference increased, the compressive strength decreased linearly. As for the corrosion height, the residual compressive strength became constant after decreasing linearly when the corrosion height was greater than the half-wavelength of buckling of the short columns. An equation is presented to evaluate the residual compressive strength of short columns with local corrosion wherein the volume of the corrosion damage was used as a reduction factor in calculating the compressive strength. The percentage error using the presented equation was found to be within 11.4%.


Sign in / Sign up

Export Citation Format

Share Document