Experimental study and finite element analysis on the local buckling behavior of aluminium alloy beams under concentrated loads

2016 ◽  
Vol 105 ◽  
pp. 44-56 ◽  
Author(s):  
Y.Q. Wang ◽  
Z.X. Wang ◽  
F.X. Yin ◽  
L. Yang ◽  
Y.J. Shi ◽  
...  
2011 ◽  
Vol 374-377 ◽  
pp. 2430-2436
Author(s):  
Gang Shi ◽  
Zhao Liu ◽  
Yong Zhang ◽  
Yong Jiu Shi ◽  
Yuan Qing Wang

High strength steel sections have been increasingly used in buildings and bridges, and steel angles have also been widely used in many steel structures, especially in transmission towers and long span trusses. However, high strength steel exhibits mechanical properties that are quite different from ordinary strength steel, and hence, the local buckling behavior of steel equal angle members under axial compression varies with the steel strength. However, there is a lack of research on the relationship of the local buckling behavior of steel equal angle members under axial compression with the steel strength. A finite element model is developed in this paper to analyze the local buckling behavior of steel equal angle members under axial compression, and study its relationship with the steel strength and the width-to-thickness ratio of the angle leg. The finite element analysis (FEA) results are compared with the corresponding design method in the American code AISC 360-05, which provides a reference for the related design.


2021 ◽  
Vol 63 (11) ◽  
pp. 1007-1011
Author(s):  
İsmail Saraç

Abstract This study was carried out in two stages. In the first step, a numerical study was performed to verify the previous experimental study. In accordance with the previous experimental study data, single lap joints models were created using the ANSYS finite element analysis program. Then, nonlinear stress and failure analyses were performed by applying the failure loads obtained in the experimental study. The maximum stress theory was used to find finite element failure loads of the single lap joints models. As a result of the finite element analysis, an approximate 80 % agreement was found between experimental and numerical results. In the second step of the study, in order to increase the bond strength, different overlap end geometry models were produced and peel and shear stresses in the adhesive layer were compared according to the reference model. As a result of the analyses, significant strength increases were calculated according to the reference model. The strength increase in model 3 and model 5 was found to be 80 % and 67 %, respectively, relative to the reference model.


Sign in / Sign up

Export Citation Format

Share Document