Influence of single-layer geotextile reinforcement on load capacity of buried steel box structure based on laboratory full-scale tests

2020 ◽  
pp. 107312
Author(s):  
Adam Wysokowski
2000 ◽  
Vol 27 (6) ◽  
pp. 1248-1258 ◽  
Author(s):  
Robert A Douglas ◽  
W DH Woodward ◽  
A R Woodside

Many field trials have been undertaken to demonstrate the benefits of reducing the inflation pressure of the tires of heavily loaded haul vehicles, but few carefully controlled laboratory studies have been performed. An earlier full scale laboratory study indicated that tire inflation pressure had far less effect on subgrade strains for unpaved, single-layer granular road structures than the tire loading itself, so attention was directed to the behaviour of the granular base at the tire tread - road surface interface. In the present paper, the results of full scale tests performed using a laboratory apparatus designed to measure the dynamic vertical, transverse, and longitudinal contact forces under tires with varying loads and inflation pressures are reported. Vertical contact forces were observed to be highly non-uniform, both across and along the contact patch.Key words: central tire inflation systems, CTI, model study, haul trucks, unbound roads, unpaved roads, access roads.


Author(s):  
Kazem Sadati ◽  
Hamid Zeraatgar ◽  
Aliasghar Moghaddas

Maneuverability of planing craft is a complicated hydrodynamic subject that needs more studies to comprehend its characteristics. Planing craft drivers follow a common practice for maneuver of the craft that is fundamentally different from ship’s standards. In situ full-scale tests are normally necessary to understand the maneuverability characteristics of planing craft. In this paper, a study has been conducted to illustrate maneuverability characteristics of planing craft by full-scale tests. Accelerating and turning maneuver tests are conducted on two cases at different forward speeds and rudder angles. In each test, dynamic trim, trajectory, speed, roll of the craft are recorded. The tests are performed in planing mode, semi-planing mode, and transition between planing mode to semi-planing mode to study the effects of the craft forward speed and consequently running attitude on the maneuverability. Analysis of the data reveals that the Steady Turning Diameter (STD) of the planing craft may be as large as 40 L, while it rarely goes beyond 5 L for ships. Results also show that a turning maneuver starting at planing mode might end in semi-planing mode. This transition can remarkably improve the performance characteristics of the planing craft’s maneuverability. Therefore, an alternative practice is proposed instead of the classic turning maneuver. In this practice, the craft traveling in the planing mode is transitioned to the semi-planing mode by forward speed reduction first, and then the turning maneuver is executed.


1984 ◽  
Vol 18 (4) ◽  
pp. 166-170
Author(s):  
A. L. Rakhmanova ◽  
I. O. Rybak

Author(s):  
Yu. I. Buryak ◽  
A. A. Skrynnikov

The article is devoted to the substantiation of the procedure for testing complex technical systems to assess the probability of performing the task, taking into account a priori data obtained from the results of modeling, field tests of components and prototypes, operation of analogues, etc. The conditions for the formation of a combined sample consisting of field experiments and experiments counted on the results of modeling are justified. Data uniformity is checked using the Student's criterion. The minimum volume of full-scale tests is determined by the requirement of equality of the amount of Fischer information about the estimated parameter obtained during full-scale tests and at the expense of a priori data A strategy for conducting field experiments is proposed, in which the required quality of evaluating the probability of completing the task is achieved with the minimum possible number of field experiments. At the first stage, a series of experiments with a volume equal to half of the required sample size is performed. At the second stage, the experiments are conducted sequentially with an assessment after each experiment of the requirements for the amount of information about the evaluated parameter and for the uniformity of data. Experiments are terminated when the specified requirements are met, and then a combined sample is formed, which is used to evaluate the probability of the system performing the task. A model example is considered. The estimation of the gain in the number of experiments performed at different probability values was carried out.


Sign in / Sign up

Export Citation Format

Share Document