Effect of land use change on summertime surface temperature, albedo, and evapotranspiration in Las Vegas Valley

Urban Climate ◽  
2021 ◽  
Vol 39 ◽  
pp. 100966
Author(s):  
Rubab Saher ◽  
Haroon Stephen ◽  
Sajjad Ahmad
2019 ◽  
Vol 26 (32) ◽  
pp. 33076-33085 ◽  
Author(s):  
Imran Khan ◽  
Tehseen Javed ◽  
Ahmad Khan ◽  
Hongdou Lei ◽  
Ihsan Muhammad ◽  
...  

Author(s):  
S. Youneszadeh ◽  
N. Amiri ◽  
P. Pilesjo

The Netherlands is a small country with a relatively large population which experienced a rapid rate of land use changes from 2000 to 2008 years due to the industrialization and population increase. Land use change is especially related to the urban expansion and open agriculture reduction due to the enhanced economic growth. This research reports an investigation into the application of remote sensing and geographical information system (GIS) in combination with statistical methods to provide a quantitative information on the effect of land use change on the land surface temperature. In this study, remote sensing techniques were used to retrieve the land surface temperature (LST) by using the MODIS Terra (MOD11A2) Satellite imagery product. As land use change alters the thermal environment, the land surface temperature (LST) could be a proper change indicator to show the thermal changes in relation with land use changes. The Geographical information system was further applied to extract the mean yearly land surface temperature (LST) for each land use type and each province in the 2003, 2006 and 2008 years, by using the zonal statistic techniques. The results show that, the inland water and offshore area has the highest night land surface temperature (LST). Furthermore, the Zued (South)-Holland province has the highest night LST value in the 2003, 2006 and 2008 years. The result of this research will be helpful tool for urban planners and environmental scientists by providing the critical information about the land surface temperature.


Author(s):  
Risya Lailarahma ◽  
I Wayan Sandi Adnyana

Land use changes over Jakarta caused by urbanization affected the increasing of infrastructure and decreasing vegetation from 2003 to 2016. This condition reduced water infiltration and caused inundation when heavy rainfall coming. Then Aedes aegypti would breed.and increased which brought dengue fever desease. This study was about analyzing the land use change in Jakarta Province using Landsat image, and its relationship with land surface temperature and dengue fever distribution. The effects of land use change also analysed by this study which including the effects from temperature and dengue fever that analysed by indices of land use in Jakarta at 2003 and 2016. The temperature analysis could be obtained by TIR band in Landsat and using some algortitma which calculated in band math of ENVI software. Vegetation index value’s average decreased from 0.652 in 2003 to 0.647 2016 in 2016. Built up index value’s average increased from -0.03 in 2003 to -0.02 in 2016. While Bareland index value’s average decreased from 0.16 in 2003 to -0.46 in 2016. Land surface temperature increased 3?C from 2003 to 2016. Vegetation area decreased 27.929 ha, bare land area decreased 6.012 ha, while built up area increased 34.278 ha from 2003 to 2016. Increasing of land surface temperature proportional to increasing dengue fever patients 1.187 patients. Increasing of land surface temperature increasing dengue fever cases 1.187 patients. To review and monitor more about the relationship between landuse changes and temperature changes required image with high resolution so that the results obtained more accurate. Complete data of dengue fever per subdistricts also required to analyse further more about relationship between landuse changes, temperature changes, and dengue fever.


2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Nwabueze Ikenna Igu ◽  
Joseph O. Duluora ◽  
Uzoamaka R. Onyeizugbe

The rate at which forest ecosystems are lost and modified across tropical landscapes are alarming, yet proper documentation and proactive measures to curtail this still remains a huge challenge in most areas. This research focused on elucidating the ongoing land use change patterns of a riparian forest landscape, its current impacts on the ecosystem and land surface temperature, as well as its likely future scenarios for the zone. LANDSAT images were downloaded for 1988, 2003 and 2018 and used to show the dynamics for the zone, its drivers and their varying temperatures. Maximum Likelihood Classification algorithm was used for the classification and the land-use classes were categorized as: Water body, Farms and Sparse Vegetation, Built-up Areas, Bare Surface, and Thick Vegetation. Furthermore, Markov Chain Analysis was employed for understanding the future patterns of land use change in the zone. Land use categories experienced changes over the three epochs, but among all, farmlands/ sparse vegetation and thick vegetation had the most significant changes from 7.70 to 58.67 percent and 73.56 to 20.58 percent, respectively; implying that much of the forestland use/cover (which constituted the bulk of the land initially; 73.56 percent) were converted to agricultural land use. This same trend at which agriculture grew in the zone was seen to affect the land surface temperature for zone (Pearson correlation coefficient of  0.99 with p = 0.0058 at 0.05 level of significance). Future projection for the zone equally showed that agricultural land use will likely dominate the entire landscape in the coming years and a consequent impact on the climate and ecosystem expected as well. On that note, intensive agricultural practices that seek to maximize allocated farm units were advocated. Such initiatives will help to ensure that agricultural growth is contained within delimited zones so that haphazard cultivations, reductions in ecological value of the forest landscape and consequent climatic impacts could be managed across the region.


2011 ◽  
Vol 38 (19) ◽  
pp. n/a-n/a ◽  
Author(s):  
Jung-Eun Lee ◽  
Benjamin R. Lintner ◽  
C. Kevin Boyce ◽  
Peter J. Lawrence

Author(s):  
H. M. Imran ◽  
Anwar Hossain ◽  
A. K. M. Saiful Islam ◽  
Ataur Rahman ◽  
Md Abul Ehsan Bhuiyan ◽  
...  

AbstractUrbanization leads to the construction of various urban infrastructures in the city area for residency, transportation, industry, and other purposes, which causes major land use change. Consequently, it substantially affects Land Surface Temperature (LST) by unbalancing the surface energy budget. Higher LST in city areas decreases human thermal comfort for the city dwellers and affects the urban environment and ecosystem. Therefore, a comprehensive investigation is needed to evaluate the impact of land use change on the LST. Remote Sensing (RS) and Geographic Information System (GIS) techniques were used for the detailed investigation. RS data for the years 1993, 2007 and 2020 during summer (March–May) in Dhaka city were used to prepare land cover maps, analyze LST, generate hazard maps and relate the land cover change with LST by using GIS. The results show that the built-up area in Dhaka city increased by 67% from 1993 to 2020 by replacing lowland mainly, followed by vegetation, bare soil and water bodies. LSTs found in the study area were ranged from 23.26 to 39.94 °C, 23.69 to 43.35 °C and 24.44 to 44.58 °C for the years 1993, 2007 and 2020, respectively. The increases of spatially distributed maximum and mean LST were found 4.62 °C and 6.43 °C, respectively, for the study period of 27 years while the change in minimum LST was not substantial. LST increased by around 0.24 °C per year and human thermal discomfort shifted from moderate to strong heat stress for the total study period due to the increase of built-up and bare lands. This study also shows that normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) were negatively correlated with LST while normalized difference built-up Index (NDBI) and normalized difference built-up Index (NDBAI) were positively correlated with LST. The methodology developed in this study can be adapted to other cities around the globe.


2016 ◽  
Author(s):  
Xueqian Wang ◽  
Weidong Guo ◽  
Bo Qiu ◽  
Ye Liu ◽  
Jianning Sun ◽  
...  

Abstract. Anthropogenic land use has significant impact on climate change. Located in the typical East Asian monsoon region, the land-atmosphere interaction in the lower reaches of Yangtze River is even more complicated due to intensive human activities and different types of land use in this region. To better understand these effects on microclimate change, we compare differences in land surface temperature (Ts) for three land types around Nanjing from March to August, 2013, and then quantify the contribution of land surface parameters to these differences (ΔTs) by considering the effects of surface albedo, roughness length, and evaporation respectively. The atmospheric background contribution to ΔTs is also considered based on differences in air temperature (∆Ta). It is found that the cropland cooling effect and urban heat island effect both are induced by significant human activities in this region but they have opposite impacts on Ts. Various changes in surface parameters affect radiation and energy distribution and eventually modify Ts. It is the evaporative cooling effect that plays the most important role in this region. Besides, the background atmospheric circulation is also an indispensable part in land-atmosphere feedback induced by land use change and reinforces both cropland cooling and urban heat island effects.


2017 ◽  
Vol 17 (8) ◽  
pp. 4989-4996 ◽  
Author(s):  
Xueqian Wang ◽  
Weidong Guo ◽  
Bo Qiu ◽  
Ye Liu ◽  
Jianning Sun ◽  
...  

Abstract. Anthropogenic land use has a significant impact on climate change. Located in the typical East Asian monsoon region, the land–atmosphere interaction in the lower reaches of the Yangtze River is even more complicated due to intensive human activities and different types of land use in this region. To better understand these effects on microclimate change, we compare differences in land surface temperature (Ts) for three land types around Nanjing from March to August, 2013, and then quantify the contribution of land surface factors to these differences (ΔTs) by considering the effects of surface albedo, roughness length, and evaporation. The atmospheric background contribution to ΔTs is also considered based on differences in air temperature (ΔTa). It is found that the cropland cooling effect decreases Ts by 1.76° and the urban heat island effect increases Ts by 1.25°. They have opposite impacts but are both significant in this region. Various changes in surface factors affect radiation and energy distribution and eventually modify Ts. It is the evaporative cooling effect that plays the most important role in this region and accounts for 1.40° of the crop cooling and 2.29° of the urban warming. Moreover, the background atmospheric circulation is also an indispensable part in land–atmosphere feedback induced by land use change and reinforces both these effects.


Sign in / Sign up

Export Citation Format

Share Document