scholarly journals Surface temperature cooling trends and negative radiative forcing due to land use change toward greenhouse farming in southeastern Spain

2008 ◽  
Vol 113 (D18) ◽  
Author(s):  
Pablo Campra ◽  
Monica Garcia ◽  
Yolanda Canton ◽  
Alicia Palacios-Orueta
2019 ◽  
Vol 26 (32) ◽  
pp. 33076-33085 ◽  
Author(s):  
Imran Khan ◽  
Tehseen Javed ◽  
Ahmad Khan ◽  
Hongdou Lei ◽  
Ihsan Muhammad ◽  
...  

2016 ◽  
Vol 48 (11-12) ◽  
pp. 3489-3505 ◽  
Author(s):  
Timothy Andrews ◽  
Richard A. Betts ◽  
Ben B. B. Booth ◽  
Chris D. Jones ◽  
Gareth S. Jones

Author(s):  
S. Youneszadeh ◽  
N. Amiri ◽  
P. Pilesjo

The Netherlands is a small country with a relatively large population which experienced a rapid rate of land use changes from 2000 to 2008 years due to the industrialization and population increase. Land use change is especially related to the urban expansion and open agriculture reduction due to the enhanced economic growth. This research reports an investigation into the application of remote sensing and geographical information system (GIS) in combination with statistical methods to provide a quantitative information on the effect of land use change on the land surface temperature. In this study, remote sensing techniques were used to retrieve the land surface temperature (LST) by using the MODIS Terra (MOD11A2) Satellite imagery product. As land use change alters the thermal environment, the land surface temperature (LST) could be a proper change indicator to show the thermal changes in relation with land use changes. The Geographical information system was further applied to extract the mean yearly land surface temperature (LST) for each land use type and each province in the 2003, 2006 and 2008 years, by using the zonal statistic techniques. The results show that, the inland water and offshore area has the highest night land surface temperature (LST). Furthermore, the Zued (South)-Holland province has the highest night LST value in the 2003, 2006 and 2008 years. The result of this research will be helpful tool for urban planners and environmental scientists by providing the critical information about the land surface temperature.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jialei Zhu ◽  
Joyce E. Penner ◽  
Fangqun Yu ◽  
Sanford Sillman ◽  
Meinrat O. Andreae ◽  
...  

Author(s):  
Risya Lailarahma ◽  
I Wayan Sandi Adnyana

Land use changes over Jakarta caused by urbanization affected the increasing of infrastructure and decreasing vegetation from 2003 to 2016. This condition reduced water infiltration and caused inundation when heavy rainfall coming. Then Aedes aegypti would breed.and increased which brought dengue fever desease. This study was about analyzing the land use change in Jakarta Province using Landsat image, and its relationship with land surface temperature and dengue fever distribution. The effects of land use change also analysed by this study which including the effects from temperature and dengue fever that analysed by indices of land use in Jakarta at 2003 and 2016. The temperature analysis could be obtained by TIR band in Landsat and using some algortitma which calculated in band math of ENVI software. Vegetation index value’s average decreased from 0.652 in 2003 to 0.647 2016 in 2016. Built up index value’s average increased from -0.03 in 2003 to -0.02 in 2016. While Bareland index value’s average decreased from 0.16 in 2003 to -0.46 in 2016. Land surface temperature increased 3?C from 2003 to 2016. Vegetation area decreased 27.929 ha, bare land area decreased 6.012 ha, while built up area increased 34.278 ha from 2003 to 2016. Increasing of land surface temperature proportional to increasing dengue fever patients 1.187 patients. Increasing of land surface temperature increasing dengue fever cases 1.187 patients. To review and monitor more about the relationship between landuse changes and temperature changes required image with high resolution so that the results obtained more accurate. Complete data of dengue fever per subdistricts also required to analyse further more about relationship between landuse changes, temperature changes, and dengue fever.


2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Nwabueze Ikenna Igu ◽  
Joseph O. Duluora ◽  
Uzoamaka R. Onyeizugbe

The rate at which forest ecosystems are lost and modified across tropical landscapes are alarming, yet proper documentation and proactive measures to curtail this still remains a huge challenge in most areas. This research focused on elucidating the ongoing land use change patterns of a riparian forest landscape, its current impacts on the ecosystem and land surface temperature, as well as its likely future scenarios for the zone. LANDSAT images were downloaded for 1988, 2003 and 2018 and used to show the dynamics for the zone, its drivers and their varying temperatures. Maximum Likelihood Classification algorithm was used for the classification and the land-use classes were categorized as: Water body, Farms and Sparse Vegetation, Built-up Areas, Bare Surface, and Thick Vegetation. Furthermore, Markov Chain Analysis was employed for understanding the future patterns of land use change in the zone. Land use categories experienced changes over the three epochs, but among all, farmlands/ sparse vegetation and thick vegetation had the most significant changes from 7.70 to 58.67 percent and 73.56 to 20.58 percent, respectively; implying that much of the forestland use/cover (which constituted the bulk of the land initially; 73.56 percent) were converted to agricultural land use. This same trend at which agriculture grew in the zone was seen to affect the land surface temperature for zone (Pearson correlation coefficient of  0.99 with p = 0.0058 at 0.05 level of significance). Future projection for the zone equally showed that agricultural land use will likely dominate the entire landscape in the coming years and a consequent impact on the climate and ecosystem expected as well. On that note, intensive agricultural practices that seek to maximize allocated farm units were advocated. Such initiatives will help to ensure that agricultural growth is contained within delimited zones so that haphazard cultivations, reductions in ecological value of the forest landscape and consequent climatic impacts could be managed across the region.


2013 ◽  
Vol 13 (3) ◽  
pp. 1261-1275 ◽  
Author(s):  
E. T. Sena ◽  
P. Artaxo ◽  
A. L. Correia

Abstract. This paper addresses the Amazonian shortwave radiative budget over cloud-free conditions after considering three aspects of deforestation: (i) the emission of aerosols from biomass burning due to forest fires; (ii) changes in surface albedo after deforestation; and (iii) modifications in the column water vapour amount over deforested areas. Simultaneous Clouds and the Earth's Radiant Energy System (CERES) shortwave fluxes and aerosol optical depth (AOD) retrievals from the Moderate Resolution Imaging SpectroRadiometer (MODIS) were analysed during the peak of the biomass burning seasons (August and September) from 2000 to 2009. A discrete-ordinate radiative transfer (DISORT) code was used to extend instantaneous remote sensing radiative forcing assessments into 24-h averages. The mean direct radiative forcing of aerosols at the top of the atmosphere (TOA) during the biomass burning season for the 10-yr studied period was −5.6 ± 1.7 W m−2. Furthermore, the spatial distribution of the direct radiative forcing of aerosols over Amazonia was obtained for the biomass burning season of each year. It was observed that for high AOD (larger than 1 at 550 nm) the maximum daily direct aerosol radiative forcing at the TOA may be as high as −20 W m−2 locally. The surface reflectance plays a major role in the aerosol direct radiative effect. The study of the effects of biomass burning aerosols over different surface types shows that the direct radiative forcing is systematically more negative over forest than over savannah-like covered areas. Values of −15.7 ± 2.4 W m−2τ550 nm and −9.3 ± 1.7 W m−2τ550 nm were calculated for the mean daily aerosol forcing efficiencies over forest and savannah-like vegetation respectively. The overall mean annual land use change radiative forcing due to deforestation over the state of Rondônia, Brazil, was determined as −7.3 ± 0.9 W m−2. Biomass burning aerosols impact the radiative budget for approximately two months per year, whereas the surface albedo impact is observed throughout the year. Because of this difference, the estimated impact in the Amazonian annual radiative budget due to surface albedo-change is approximately 6 times higher than the impact due to aerosol emissions. The influence of atmospheric water vapour content in the radiative budget was also studied using AERONET column water vapour. It was observed that column water vapour is on average smaller by about 0.35 cm (around 10% of the total column water vapour) over deforested areas compared to forested areas. Our results indicate that this drying contributes to an increase in the shortwave radiative forcing, which varies from 0.4 W m−2 to 1.2 W m−2 depending on the column water vapour content before deforestation. The large radiative forcing values presented in this study point out that deforestation could have strong implications in convection, cloud development and the ratio of direct to diffuse radiation, which impacts carbon uptake by the forest.


2011 ◽  
Vol 38 (19) ◽  
pp. n/a-n/a ◽  
Author(s):  
Jung-Eun Lee ◽  
Benjamin R. Lintner ◽  
C. Kevin Boyce ◽  
Peter J. Lawrence

Sign in / Sign up

Export Citation Format

Share Document