Growth and stability of deep planted red maple and northern red oak trees and the efficacy of root collar excavations

2016 ◽  
Vol 18 ◽  
pp. 19-24
Author(s):  
J. Roger Harris ◽  
Susan D. Day ◽  
Brian Kane
1981 ◽  
Vol 11 (3) ◽  
pp. 689-695 ◽  
Author(s):  
Craig G. Lorimer

Mortality and growth rates of trees in various crown classes and size classes were analyzed from 40-year permanent plot records of slope and ravine forest dominated by chestnut oak (Quercusprinus L.) and northern red oak (Quercusrubra L.). Average 5-year mortality rates for suppressed trees ≥2.5 cm dbh of chestnut oak and red oak in the slope forest were 26 and 45%, respectively. None of the suppressed red oaks survived the 40-year period, compared with 14% of the chestnut oaks and 33% of the red maples (Acerrubrum L.). Mortality of oak trees in the intermediate crown class was less than half that of suppressed trees, but still much higher than that of maples and birches on the tracts. Survival was reasonably high for oaks as long as the top of the crown was receiving direct sunlight, but the expected 40-year survival rate of red oaks in such a position is only 20%, with an average growth rate of 1.0 mm in diameter per year. Curves and equations expressing average mortality and growth rates at various levels of competition are presented for each species.


1988 ◽  
Vol 12 (1) ◽  
pp. 23-27 ◽  
Author(s):  
Neil I. Lamson

Abstract In northern West Virginia, 7-year-old American basswood (Tilia americana L.) and 12-year-old red maple (Acer rubrum L.), black cherry (Prunus serotina Ehrh.), and northern red oak (Quercus rubra L.) stump sprout clumps received one of four treatments: unthinned control; thinned to the best one or two codominant sprouts per clump; branch pruned up to 75% of total height; or thinned plus pruned. Analysis of 10-year growth data showed that height growth was not affected by any of the treatments. For all species, pruning slightly increased the length of clear stem and decreased periodic diameter growth. Thinning increased survival of basswood, red oak, and red maple crop stems. Thinning increased the 10-year diameter growth by 0.1 to 0.8 in. Recommendations for thinning 10- to 20-year-old sprout clumps are presented. Pruning is not recommended. In order to maintain maximum diameter growth, thinning individual sprout clumps should be followed by stand crop tree release in about 10 years. South. J. Appl. For. 12(1):23-27.


1996 ◽  
Vol 13 (4) ◽  
pp. 182-188 ◽  
Author(s):  
Patrick J. Guertin ◽  
C. W. Ramm

Abstract Five-year diameter growth, basal area growth, and mortality for five upland hardwood species in northern Lower Michigan were compared to projections from Lake States TWIGS. The species studied were northern red oak, white oak, other red oak (pin oak and black oak combined), sugar maple, and red maple. The validation data consisted of individual tree measurements from 44 stands across 10 ecological land types on the Manistee National Forest. The stands were measured in 1986 and 1991; during this time interval stands experienced a drought and outbreaks of leaf defoliators. For individual dbh classes, 5 yr diameter growth was predicted within ± 0.3 in. for all species. Mean errors for BA projections were within ± 5 ft²/ac for all species, and mean error for trees/ac ranged from - 33 for other red oak to + 16 for sugar maple. Although precision was variable, Lake States TWIGS provided accurate predictions of 5 yr diameter growth for the five species tested. Projections of mortality were less accurate. North. J. Appl. For. 13(4):00-00.


2003 ◽  
Vol 27 (4) ◽  
pp. 264-268 ◽  
Author(s):  
Eric Heitzman

Abstract Since 1999, widespread and locally severe oak decline and mortality have occurred throughout the Ozark Mountains of northern Arkansas and southern Missouri. A contributing factor in the decline and mortality is an outbreak of the red oak borer [Enaphalodes rufulus (Haldeman) (Coleoptera: Cerambycidae)]. In northern Arkansas, a 2,150 ac mature oak forest severely affected by decline was selected as a case study to describe changes in species composition and stand structure and to assess regeneration potential of oaks and non-oak species. Mortality reduced total overstory basal area from 105 to 57 ft2/ac, and overstory density decreased from 156 to 89 trees/ac. Most dead and dying trees were northern red oak (Quercus rubra L.) and black oak (Q. velutina Lam.). Basal area and density of overstory red oaks were reduced from 51 to 11 ft2/ac and from 60 to 11 trees/ac, respectively. These trees died regardless of dbh class. Mortality was less common in white oak (Q. alba L.) and was generally limited to smaller trees. Understory trees and taller seedlings were predominantly red maple (Acer rubrum L.), flowering dogwood (Cornus florida L.), blackgum (Nyssa sylvatica Marsh.), and black cherry (Prunus serotina Ehrh.). Oaks less than 3 ft tall were abundant, but taller oak seedlings and saplings were uncommon. Tree mortality increased the proportion of white oak and hickories (Carya spp.) in the overstory, and stimulated a regeneration response of mostly non-oak species. South. J. Appl. For. 27(4):264–268.


Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 547
Author(s):  
Kaile Mai ◽  
Roger A. Williams

Oak regeneration failures have been causing a slow decline in the occurrence of oak forest ecosystems in eastern North America. Accordingly, our study sought to determine a means of creating more vigorous and competitive oak seedlings by the addition of manganese (Mn) fertilizers. Seeds of northern red oak (Quercus rubra L.), chestnut oak (Quercus prinus L.), and red maple (Acer rubrum L.), one of oak’s major competitors in North America oak forest ecosystems, were sown in 0.7 liter pots that contained a growing medium mixture of peat moss, perlite, and sand in a ratio of 2:1:2, and germinated in a greenhouse. Three different chemical compound Mn fertilizer treatments—manganese chloride (0.16 mg L−1 Mn, MnCl2·4H2O), nanoparticle manganese in the form of manganese hydroxide (0.01 mg/L Mn, nanoparticle Mn(OH)2), and manganese hydroxide (0.01 mg L−1 Mn, Mn(OH)2)—and a treatment of Hoagland solution were applied to the planted seed. These treatments were compared to a control consisting of water, and treatments were applied twice a week over a 12 week period. Germination rates and seedling growth were measured over this period of time. At the end of 12 weeks seedlings were harvested, separated into roots, stem, and foliage for the purpose of biomass and nutrient analysis by seedling component. Northern red oak displayed a 100% germination success rate with MnCl2·4H2O and Mn(OH)2 treatments, while red maple germination was reduced with the MnCl2·4H2O and nanoparticle Mn(OH)2 treatments with only a 32% and 24% germination rate, respectively. The MnCl2·4H2O treatment produced the largest overall seedling size (basal diameter squared times the seedling height) of red maple with a 191.6% increase; however, the MnCl2·4H2O treatment produced the largest overall seedling size (basal diameter squared times the seedling height) of northern red oak and chestnut oak with an increase of 503.7% and 339.5%, respectively. The greatest increase in overall seedling size for northern red oak was with the Mn(OH)2 treatment at 507.2%, and 601.2% for chestnut oak with the nanoparticle Mn(OH)2 treatment. MnCl2·4H2O treatment significantly increased the oak foliar nitrogen (N) content. It appears that the application of Mn fertilizer can increase the germination and growth of these oak species while suppressing or having a lesser effect on red maple, thus creating a competitive advantage for oak over its competitor.


1987 ◽  
Vol 4 (4) ◽  
pp. 212-212 ◽  
Author(s):  
Harry V. Wiant ◽  
Thomas B. Williams

Abstract Coefficients are provided for estimating dbh from stump measurements and estimating diameter and volume from groundline to dbh for northern red oak, white oak, red maple, and yellow-poplar. North. J. Appl. For. 4:212, December 1987.


1999 ◽  
Vol 16 (3) ◽  
pp. 144-150 ◽  
Author(s):  
David W. McGill ◽  
Robert Rogers ◽  
A. Jeff Martin ◽  
Paul S. Johnson

Abstract Stocking equations and charts for stands dominated by northern red oak were developed from data collected on 66 plots in 52 northern red oak stands in Wisconsin. In all plots, northern red oak was the dominant species. Tolerant species such as sugar maple and red maple usually formed a subcanopy. We used the tree-area ratio method for measuring stocking. However, we treated the tolerant subcanopy as a separate component of stocking. This facilitated defining average maximum relative stand density (100% stocking)for the main canopy or the main canopy and subcanopy combined.This approach is based on the assumption that shade tolerant species can exploit resources in spatial strata that are unexploited by the mid-tolerant red oak. The resulting stocking equations and charts can provide an objective basis for evaluating stocking of northern red oak stands in Wisconsin.North. J. Appl. For. 16(3):144-150.


Ecosphere ◽  
2016 ◽  
Vol 7 (3) ◽  
Author(s):  
Stephanie M. Juice ◽  
Pamela H. Templer ◽  
Nathan G. Phillips ◽  
Aaron M. Ellison ◽  
Shannon L. Pelini

2015 ◽  
Vol 67 (4) ◽  
pp. 1357-1360
Author(s):  
Vladan Popovic ◽  
Aleksandar Lucic ◽  
Ljubinko Rakonjac ◽  
Tatjana Cirkovic-Mitrovic ◽  
Ljiljana Brasanac-Bosanac

The aim of this research was to examine the influence of acorn size on morphological characteristics of one-year-old Northern red oak (Quercus rubra L.) seedlings. The quality of seedlings correlates with the quality of the seed they are derived from. In species with large seeds, as in the case of Northern red oak, the seedling growth in the first growing season is closely related to seed size or the amount of reserve nutrients that are stored in the seed. The height and root collar diameter of one-year-old Northern red oak seedlings increases with increase in acorn size. The results obtained in this research can be used as a guideline for acorn grading, because they show that improved Northern red oak seedlings quality can be achieved using seeds of appropriate size.


Sign in / Sign up

Export Citation Format

Share Document