Atomic resolution imaging of YAlO3: Ce in the chromatic and spherical aberration corrected PICO electron microscope

2017 ◽  
Vol 176 ◽  
pp. 99-104 ◽  
Author(s):  
Lei Jin ◽  
Juri Barthel ◽  
Chun-Lin Jia ◽  
Knut W. Urban
Author(s):  
Andreas Thust ◽  
Juri Barthel ◽  
Karsten Tillmann

The FEI Titan 80-300 TEM is a high-resolution transmission electron microscope equipped with a field emission gun and a corrector for the spherical aberration (<em>C</em><sub>S</sub>) of the imaging lens system. The instrument is designed for the investigation of a wide range of solid state phenomena taking place on the atomic scale, which requires true atomic resolution capabilities. Under optimum optical settings of the image <em>C</em><sub>S</sub>-corrector (CEOS CETCOR) the point-resolution is extended up to the information limit of well below 100 pm with 200 keV and 300 keV electrons. A special piezo-stage design allows ultra-precise positioning of the specimen in all 3 dimensions. Digital images are acquired with a Gatan 2k x 2k slow-scan charged coupled device camera.


2012 ◽  
Vol 54 (3) ◽  
pp. 159-165
Author(s):  
Yoshifumi OSHIMA ◽  
Yasumasa TANISHIRO ◽  
Takayuki TANAKA ◽  
Kunio TAKAYANAGI

2011 ◽  
Vol 19 (3) ◽  
pp. 10-14 ◽  
Author(s):  
Joerg R. Jinschek ◽  
Emrah Yucelen ◽  
Bert Freitag ◽  
Hector A. Calderon ◽  
Andy Steinbach

In his now-famous 1959 speech on nanotechnology, Richard Feynman proposed that it should be possible to see the individual atoms in a material, if only the electron microscope could be made 100 times better. With the development of aberration correctors on transmission electron microscopes (TEMs) over the last decade, this dream of microscopists to directly image structures atom-by-atom has come close to an everyday reality. Figure 1 shows such a high-resolution transmission electron microscope (HR-TEM) image of a single-wall carbon nanotube obtained with an aberration-corrected TEM. Now that atomic-resolution images have become possible with aberration-corrector technology in both TEM and STEM, we can ask ourselves if we truly have achieved the goal of seeing individual atoms. Most aberration-corrected images exhibiting atomic resolution are not distinguishing individual atoms, but columns of a small number of atoms, so despite this remarkable achievement, there is still “plenty of room at the bottom” in order to move toward seeing, counting, and quantifying individual atoms. In fact, there never has been a more exciting time for electron microscopists.


2000 ◽  
Vol 6 (S2) ◽  
pp. 746-747 ◽  
Author(s):  
D.J. Maas ◽  
A. Henstra ◽  
M.P.C.M. Krijn ◽  
S.A.M. Mentink

The resolution of a low-voltage electron microscope is limited by the chromatic and spherical aberration of the objective lens, see Fig. 1. The design of state-of-the-art objective lenses is optimised for minimal aberrations. Any significant improvement of the resolution requires an aberration corrector. Recently, correction of both Cc and Cs has been demonstrated in SEM, using a combination of magnetic and electrostatic quadrupoles and octupoles (Zach and Haider, 1995). The present paper presents an alternative design, which is based on a purely electrostatic concept, potentially simplifying the ease-of-use of an aberration corrected microscope.In 1936 Scherzer showed that the fundamental lens aberrations of round lenses are positive definite, in absence of time-varying fields and/or space charge. Negative lens aberrations, required for the correction of Cc and Cs, can only be obtained using non-round lenses, e.g. quadrupoles and octupoles (Scherzer, 1947).


2004 ◽  
Vol 10 (S02) ◽  
pp. 1172-1173 ◽  
Author(s):  
Stephen J Pennycook ◽  
Andrew R Lupini ◽  
Albina Y Borisevich ◽  
Yiping Peng ◽  
Naoya Shibata

Extended abstract of a paper presented at Microscopy and Microanalysis 2004 in Savannah, Georgia, USA, August 1–5, 2004.


Sign in / Sign up

Export Citation Format

Share Document