The influence of pore shapes on the band structures in phononic crystals with periodic distributed void pores

Ultrasonics ◽  
2009 ◽  
Vol 49 (2) ◽  
pp. 276-280 ◽  
Author(s):  
Ying Liu ◽  
Jia-Yu Su ◽  
Ya-Ling Xu ◽  
Xing-Chun Zhang
2012 ◽  
Vol 376 (33) ◽  
pp. 2256-2263 ◽  
Author(s):  
Zhenlong Xu ◽  
Fugen Wu ◽  
Zhongning Guo

Author(s):  
Zi-Gui Huang ◽  
Yunn-Lin Hwang ◽  
Pei-Yu Wang ◽  
Yen-Chieh Mao

The excellent applications and researches of so-called photonic crystals raise the exciting researches of phononic crystals. By the analogy between photon and phonon, repetitive composite structures that are made up of different elastic materials can also prevent elastic waves of some certain frequencies from passing by, i.e., the frequency band gap features also exist in acoustic waves. In this paper, we present the results of the tunable band gaps of acoustic waves in two-dimensional phononic crystals with reticular band structures using the finite element method. Band gaps variations of the bulk modes due to different thickness and angles of reticular band structures are calculated and discussed. The results show that the total elastic band gaps for mixed polarization modes can be enlarged or reduced by adjusting the orientation of the reticular band structures. The phenomena of band gaps of elastic or acoustic waves can potentially be utilized for vibration-free, high-precision mechanical systems, and sound insulation.


Meccanica ◽  
2017 ◽  
Vol 53 (4-5) ◽  
pp. 923-935 ◽  
Author(s):  
Ying Wu ◽  
Kaiping Yu ◽  
Linyun Yang ◽  
Rui Zhao

Crystals ◽  
2016 ◽  
Vol 6 (1) ◽  
pp. 11 ◽  
Author(s):  
Lin Han ◽  
Yan Zhang ◽  
Xiao-mei Li ◽  
Lin-hua Jiang ◽  
Da Chen

2018 ◽  
Vol 123 (9) ◽  
pp. 095102 ◽  
Author(s):  
Lingkai Meng ◽  
Zhifei Shi ◽  
Zhibao Cheng

2019 ◽  
Vol 33 (32) ◽  
pp. 1950403
Author(s):  
Fengxiang Guo ◽  
Hui Guo ◽  
Pei Sun ◽  
Tao Yuan ◽  
Yansong Wang

Viscoelastic materials can dissipate energy and hinder propagation for plane waves, which can adjust the band structures of phononic crystals (PCs). In this study, the wave propagation in a two-dimensional PC with a viscoelastic matrix is investigated. The Maxwell model is utilized to analyze the effect of material parameters on the frequency dependence of viscoelasticity. Material parameters include the relaxation time, the initial value and the final value of the shear modulus. Band structures of viscoelastic phononic crystals (VPCs) are solved by combining the plane wave expansion method and iterative algorithm based on Bloch theory. The effects of the viscoelasticity on the band structures are studied using the single-mode and multi-mode Maxwell models. Results reveal that the viscoelasticity of the materials not only extends the band gaps but also shifts the band gaps to lower frequencies. Furthermore, the viscoelasticity simulated by the multi-mode model can precisely adjust anyone of the band gaps of VPCs separately. Results provide insights into the design and applications of VPCs.


Crystals ◽  
2017 ◽  
Vol 7 (11) ◽  
pp. 328 ◽  
Author(s):  
Mao Liu ◽  
Jiawei Xiang ◽  
Yongteng Zhong

2013 ◽  
Vol 81 (1) ◽  
Author(s):  
Y. Q. Guo ◽  
D. N. Fang

Beam-type phononic crystals as one kind of periodic material bear frequency bands for bending waves. For the first time, this paper presents formation mechanisms of the phase constant spectra in pass-bands of bending waves (coupled flexural and thickness-shear waves) in bicoupled beam-type phononic crystals based on the model of periodic binary beam with rigidly connected joints. Closed-form dispersion relation of bending waves in the bicoupled periodic binary beam is obtained by our proposed method of reverberation-ray matrix (MRRM), based on which the bending-wave band structures in the bicoupled binary beam phononic crystal are found to be generated from the dispersion curves of the equivalent bending waves in the unit cell due to the zone folding effect, the cut-off characteristic of thickness-shear wave mode, and the wave interference phenomenon. The ratios of band-coefficient products, the characteristic times of the unit cell and the characteristic times of the constituent beams are revealed as the three kinds of essential parameters deciding the formation of bending-wave band structures. The MRRM, the closed-form dispersion relation, the formation mechanisms, and the essential parameters for the bending-wave band structures in bicoupled binary beam phononic crystals are validated by numerical examples, all of which will promote the applications of beam-type phononic crystals for wave filtering/guiding and vibration isolation/control.


Sign in / Sign up

Export Citation Format

Share Document