scholarly journals Using high frequency and low-intensity ultrasound to enhance activated sludge characteristics

2019 ◽  
Vol 54 ◽  
pp. 274-280 ◽  
Author(s):  
Parviz Mohammadi ◽  
Nasim Karami ◽  
Ali Akbar Zinatizadeh ◽  
Farzaneh Falahi ◽  
Nasrin Aghamohammadi ◽  
...  
2018 ◽  
Vol 276 ◽  
pp. 150-156 ◽  
Author(s):  
Kathleen Cullion ◽  
Claudia M. Santamaria ◽  
Changyou Zhan ◽  
David Zurakowski ◽  
Tao Sun ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 612
Author(s):  
Peiyang Li ◽  
Wenchang Huang ◽  
Jie Xu ◽  
Weiwei Shao ◽  
Yaoyao Cui

Intravascular ultrasound has good prospects for clinical applications in sonothrombolysis. The catheter-based side-looking intravascular ultrasound thrombolysis (e.g., Ekosonic catheters) used in clinical studies has a high frequency (2 MHz). The lower-frequency ultrasound requires a larger-diameter transducer. In our study, we designed and manufactured a small ultrasound-based prototype catheter that can emit a lower frequency ultrasound (1.1 MHz). In order to evaluate the safety and efficacy of local low-frequency ultrasound-enhanced thrombolysis, a microbubble (MB) was introduced to augment thrombolysis effect of locally delivered low-intensity ultrasound. The results demonstrated that combination of ultrasound and MB realized higher clot lysis than urokinase-only treatment (17.0% ± 1.2% vs. 14.9% ± 2.7%) under optimal ultrasound settings of 1.1 MHz, 0.414 MPa, 4.89 W/cm2, 5% duty cycle and MB concentration of 60 μg/mL. When urokinase was added, the fibrinolysis accelerated by MB and ultrasound resulted in a further increased thrombolysis rate that was more than two times than that of urokinase alone (36.7% ± 5.5% vs. 14.9% ± 2.7%). However, a great quantity of ultrasound energy was required to achieve substantial clot lysis without MB, leading to the situation that temperature accumulated inside the clot became harmful. We suggest that MB-assisted local sonothrombolysis be considered as adjuvant therapy of thrombolytic agents.


Measurement ◽  
2021 ◽  
Vol 167 ◽  
pp. 108280
Author(s):  
Zeinab Hormozi-Moghaddam ◽  
Manijhe Mokhtari-Dizaji ◽  
Mohammad-Ali Nilforoshzadeh ◽  
Mohsen Bakhshandeh

2019 ◽  
Vol 19 (06) ◽  
pp. 1950057
Author(s):  
MARIANTONIETTA IVONE ◽  
LUCIANO LAMBERTI ◽  
CARMINE PAPPALETTERE ◽  
MARIANO FRANCESCO CARATOZZOLO ◽  
APOLLONIA TULLO

The low-intensity ultrasound effects on MCF7 (human breast adenocarcinoma) and MCF10A (healthy breast cells) have been investigated at different sonication protocol to probe the effectiveness and the selectivity of the ultrasound (US) treatment and to understand the implications between cell mortality, biomechanical interactions and cell elastic modulus. Experiments performed at fixed and variable frequency demonstrated the effectiveness of some protocols in killing carcinogenic cells and the healthy cells insensitivity. Variation of elastic properties of MCF7 cells exposed to US under varying sonication conditions was examined. Sonication was carried out at fixed frequency (as it is usually done in therapy protocols), between 400[Formula: see text]kHz and 620[Formula: see text]kHz, following two protocols: (i) at fixed power output; (ii) at fixed voltage of the US generator. Evolution of cell stiffness during the US treatment was monitored via atomic force spectroscopy (AFS). It was found that cell mortality has a similar trend of variation with respect to sonication frequency regardless of the way specimens are exposed to US. Mechanical properties do not show a uniform trend with respect to frequency, but variations of Young’s modulus are more marked near the very low (400–480) kHz or very high frequencies (580–620) kHz. The observed variations may be related to mechanical interactions occurring in the cell culture, suggesting a primacy of the environment on other factors.


Sign in / Sign up

Export Citation Format

Share Document