scholarly journals Hydrodynamic cavitation degradation of Rhodamine B assisted by Fe3+-doped TiO2: Mechanisms, geometric and operation parameters

2020 ◽  
Vol 60 ◽  
pp. 104806 ◽  
Author(s):  
Guanshu Li ◽  
Ludong Yi ◽  
Jun Wang ◽  
Youtao Song
2019 ◽  
Vol 80 (8) ◽  
pp. 1571-1580
Author(s):  
Kun Wang ◽  
Ri-ya Jin ◽  
Yi-na Qiao ◽  
Zeng-di He ◽  
Ying Wang ◽  
...  

Abstract Rhodamine B (RhB), widely used as an industrial dye, is a toxic organic that is hazardous to human health and can cause water pollution. In this study, the removal rate of RhB was investigated by the following methods: hydrodynamic cavitation (HC) operated individually, and HC combined with oxidants H2O2 or ClO2. The effect of different operating parameters including pressure (2–6 bar) and initial pH (2–8) on the extent of degradation was investigated using an orifice plate as the cavitation device to achieve maximum removal of RhB. Under the parameters of HC, the effect of different loadings was investigated: H2O2 (n(RhB):n(H2O2) was varied from 1:17.60 to 1:211.28) and ClO2 (n(RhB):n(ClO2) was varied from 1:8.87 to 1:177.53). A combination of cavitation and H2O2 or ClO2 resulted in degradations of 80.6% and 95.3%. The results indicated that the combination of HC and oxidants was better than the individual HC process for the degradation of RhB. When combining HC with H2O2 or ClO2, the synergistic coefficients of 62.54 and 74.79 were obtained. The combination of HC and ClO2 was proven to be more effective for the removal of RhB compared to HC alone and the hybrid process of HC and H2O2.


2012 ◽  
Vol 535-537 ◽  
pp. 2209-2213 ◽  
Author(s):  
Jun Xiong Lin ◽  
Lan Wang ◽  
Chong Sun

Supported Fe-doped TiO2 has been prepared by a sol-gel method through the use of porous diatomite. The synthesized Fe-doped TiO2/diatomite composites were characterized by SEM and EDX techniques. The composite presented in this study showed higher adsorption and photodegradation ability of Rhodamine B than TiO2/diatomite and diatomite. It was found that the decolorization efficiency were dependent on the operational parameters of pH, photocatalyst dosage and dye concentration, and about 85% of the initial 50 mg/L dye could be adsorbed and degraded in 240 min. Moreover, kinetic study indicated that the photocatalytic degradation process could be described by the Langmuir-Hinshelwood model.


Sign in / Sign up

Export Citation Format

Share Document