Development of magnetic-field and pulsed-plasma-enhanced chemical vapor deposition method to fabricate amorphous silicon carbonitride diaphragm for environmental-cell transmission electron microscope

Vacuum ◽  
2015 ◽  
Vol 122 ◽  
pp. 332-336 ◽  
Author(s):  
Kayo Yamasaki ◽  
Takaomi Matsutani ◽  
Norihiro Imaeda ◽  
Tadahiro Kawasaki
2013 ◽  
Vol 662 ◽  
pp. 3-6
Author(s):  
Chang Yu ◽  
Xiang Tong Meng ◽  
Lei Zhang ◽  
Jie Shan Qiu

Double-walled carbon nanotubes (DWCNTs) have been synthesized by a floating catalytic chemical vapor deposition method (FC-CVD) in diameter-varied reactor with xylene as carbon sources, ferrocene as catalyst precursor, and sulfur as additive. The as-grown products were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), and Raman spectrometer. The results show that DWCNTs with a high graphite degree is centimeter-scale in length, and the inner diameter varies in the range of 1.5-1.7 nm. The effect of reactor diameter on the structure and morphology of the products was also investigated and compared. It is believed that the diameter-varied reactor may become a feasible route to the mass and continuous production of DWCNTs.


2016 ◽  
Vol 697 ◽  
pp. 841-845 ◽  
Author(s):  
Jia Xing Chang ◽  
Rong Zheng Liu ◽  
Ma Lin Liu ◽  
You Lin Shao ◽  
Bing Liu

Silicon carbide nanowires have been extensively studied because of their unique physical and chemical properties. They can be applied in high temperature, high frequency, high power, and corrosive environments, and have a wide range of applications in electronics, chemical industry, energy and other fields. In this paper, SiC nanowires with high output were synthesized by chemical vapor deposition method using methyltrichlorosilane as raw material. The influences of the catalyst and temperature were studied. SiC nanochains were also obtained by adding Al2O3 powder under appropriate temperature controlled strategy. These two kinds of one-dimensional SiC nanomaterials were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectrometer (EDS) and transmission electron microscope (TEM) methods.


2003 ◽  
Vol 766 ◽  
Author(s):  
Kosuke Takenaka ◽  
Masao Onishi ◽  
Manabu Takenshita ◽  
Toshio Kinoshita ◽  
Kazunori Koga ◽  
...  

AbstractAn ion-assisted chemical vapor deposition method by which Cu is deposited preferentially from the bottom of trenches (anisotropic CVD) has been proposed in order to fill small via holes and trenches. By using Ar + H2 + C2H5OH[Cu(hfac)2] discharges with a ratio H2 / (H2 + Ar) = 83%, Cu is filled preferentially from the bottom of trenches without deposition on the sidewall and top surfaces. The deposition rate on the bottom surface of trenches is experimentally found to increase with decreasing its width.


Sign in / Sign up

Export Citation Format

Share Document