Dynamic compression behavior of 6005 aluminum alloy aged at elevated temperatures

Vacuum ◽  
2018 ◽  
Vol 155 ◽  
pp. 604-611 ◽  
Author(s):  
Long Zhang ◽  
Hong He ◽  
Shikang Li ◽  
Xiaodong Wu ◽  
Luoxing Li
2012 ◽  
Vol 42 ◽  
pp. 418-423 ◽  
Author(s):  
Manmohan Dass Goel ◽  
Marco Peroni ◽  
George Solomos ◽  
Dehi Pada Mondal ◽  
Vasant A. Matsagar ◽  
...  

2016 ◽  
Vol 877 ◽  
pp. 393-399
Author(s):  
Jia Zhou ◽  
Jun Ping Zhang ◽  
Ming Tu Ma

This paper presents the main achievements of a research project aimed at investigating the applicability of the hot stamping technology to non heat treatable aluminium alloys of the 5052 H32 and heat treatable aluminium alloys of the 6016 T4P after six months natural aging. The formability and mechanical properties of 5052 H32 and 6016 T4P aluminum alloy sheets after six months natural aging under different temperature conditions were studied, the processing characteristics and potential of the two aluminium alloy at room and elevated temperature were investigated. The results indicated that the 6016 aluminum alloy sheet exhibit better mechanical properties at room temperature. 5052 H32 aluminum alloy sheet shows better formability at elevated temperature, and it has higher potential to increase formability by raising the temperature.


Author(s):  
Antoinette M. Maniatty ◽  
David J. Littlewood ◽  
Jing Lu

In order to better understand and predict the intragrain heterogeneous deformation in a 6063 aluminum alloy deformed at an elevated temperature, when additional slip systems beyond the usual octahedral slip systems are active, a modeling framework for analyzing representative polycrystals under these conditions is presented. A model polycrystal that has a similar microstructure to that observed in the material under consideration is modeled with a finite element analysis. A large number of elements per grain (more than 1000) are used to capture well the intragranular heterogeneous response. The polycrystal model is analyzed with three different sets of initial orientations. A compression test is used to calibrate the material model, and a macroscale simulation of the compression test is used to define the deformation history applied to the model polycrystal. In order to reduce boundary condition effects, periodic boundary conditions are applied to the model polycrystal. To investigate the effect of additional slip systems expected to be active at elevated temperatures, the results considering only the 12 {111}⟨110⟩ slip systems are compared to the results with the additional 12 {110}⟨110⟩ and {001}⟨110⟩ slip systems available (i.e., 24 available slip systems). The resulting predicted grain structure and texture are compared to the experimentally observed grain structure and texture in the 6063 aluminum alloy compression sample as well as to the available data in the literature, and the intragranular misorientations are studied.


2005 ◽  
Vol 488-489 ◽  
pp. 287-290 ◽  
Author(s):  
Tadayoshi Tsukeda ◽  
Ken Saito ◽  
Mayumi Suzuki ◽  
Junichi Koike ◽  
Kouichi Maruyama

We compared the newly developed heat resistant magnesium alloy with conventional ones by Thixomolding® and aluminum alloy by die casting. Tensile properties at elevated temperatures of AXEJ6310 were equal to those of ADC12. In particular, elongation tendency of AXEJ6310 at higher temperature was better than those of the other alloys. Creep resistance of AXEJ6310 was larger than that of AE42 by almost 3 orders and smaller than that of ADC12 by almost 2 orders of magnitude. Fatigue limits at room temperature and 423K of AXEJ6310 was superior among conventional magnesium alloys.


Holzforschung ◽  
2009 ◽  
Vol 63 (5) ◽  
Author(s):  
Cheng Zhou ◽  
Gregory D. Smith ◽  
Chunping Dai

Abstract Wood-based composites, such as oriented strand board, are typically manufactured by consolidating mats of resinated wood elements under heat and pressure. During this process, the temperature and moisture content distributions within the mat greatly affect the properties of end products. To improve the fundamental understanding of mat consolidation during hot-pressing, a model is established to investigate the transverse compression behavior of aspen wood strands for a variety of combinations of temperatures (20–200°C) and moisture contents (0–15%). A regression approach is used to obtain the modulus-temperature-moisture relationship. In addition, elevated temperatures and moistures are found to influence the strain function of wood strands, which was previously assumed to be independent of these factors.


Sign in / Sign up

Export Citation Format

Share Document