Lymphocytes of dogs immunised with purified excreted-secreted antigens of Leishmania infantum co-incubated with Leishmania infected macrophages produce IFN gamma resulting in nitric oxide-mediated amastigote apoptosis

2005 ◽  
Vol 106 (3-4) ◽  
pp. 247-257 ◽  
Author(s):  
P. Holzmuller ◽  
M. Cavaleyra ◽  
J. Moreaux ◽  
R. Kovacic ◽  
P. Vincendeau ◽  
...  
1994 ◽  
Vol 269 (13) ◽  
pp. 9811-9816
Author(s):  
J.P. Kolb ◽  
N. Paul-Eugene ◽  
C. Damais ◽  
K. Yamaoka ◽  
J.C. Drapier ◽  
...  

1996 ◽  
Vol 183 (4) ◽  
pp. 1447-1459 ◽  
Author(s):  
F P Huang ◽  
G J Feng ◽  
G Lindop ◽  
D I Stott ◽  
F Y Liew

MRL/MP-lpr/lpr (MRL/lpr) mice develop a spontaneous autoimmune disease. Serum from these mice contained significantly higher concentrations of nitrite/nitrate than serum from age-matched control MRL/MP-+/+ (MRL/+), BALB/c or CBA/6J mice. Spleen and peritoneal cells from MRL/lpr mice also produced significantly more nitric oxide (NO) than those from the control mice when cultured with interferon (IFN) gamma and lipopolysaccharide (LPS) in vitro. It is interesting to note that peritoneal cells from MRL/lpr mice also produced markedly higher concentrations of interleukin (IL) 12 than those from MRL/+ or BALB/c mice when cultured with same stimuli. It is striking that cells from MRL/lpr mice produced high concentrations of NO when cultured cells from MRL/+ or BALB/c mice. The enhanced NO synthesis induced by IFN-gamma/LPS was substantially inhibited by anti-IL-12 antibody. In addition, IL-12-induced NO production can also be markedly inhibited by anti-IFN-gamma antibody, but only weakly inhibited by anti-tumor necrosis factor alpha antibody. The effect of IL-12 on NO production was dependent on the presence of natural killer and possibly T cells. Serum from MRL/lpr mice contained significantly higher concentrations of IL-12 compared with those of MRL/+ or BALB/c control mice. Daily injection of recombinant IL-12 led to increased serum levels of IFN-gamma and NO metabolites, and accelerated glomerulonephritis in the young MRL/lpr mice (but not in the MRL/+ mice) compared with controls injected with phosphate-buffered saline alone. These data, together with previous finding that NO synthase inhibitors can ameliorate autoimmune disease in MRL/lpr mice, suggest that high capacity of such mice to produce IL-12 and their greater responsiveness to IL-12, leading to the production of high concentrations of NO, are important factors in this spontaneous model of autoimmune disease.


2011 ◽  
Vol 49 (2) ◽  
pp. 280-284 ◽  
Author(s):  
Joanna Matowicka-Karna ◽  
Maciej Kralisz ◽  
Halina Kemona
Keyword(s):  

Acta Tropica ◽  
2016 ◽  
Vol 161 ◽  
pp. 41-43 ◽  
Author(s):  
Viviana Pinedo-Cancino ◽  
Márcia Dalastra Laurenti ◽  
Norival Kesper ◽  
Eufrosina Setsu Umezawa

2008 ◽  
Vol 86 (Supplement) ◽  
pp. 7
Author(s):  
G Feng ◽  
R Francis ◽  
W Gao ◽  
T Strom ◽  
M Oukka ◽  
...  

Author(s):  
M.A. Panaro ◽  
A. Acquafredda ◽  
S. Lisi ◽  
D.D. Lofrumento ◽  
V. Mitolo ◽  
...  

1995 ◽  
Vol 269 (2) ◽  
pp. F212-F217 ◽  
Author(s):  
K. S. Lau ◽  
O. Nakashima ◽  
G. R. Aalund ◽  
L. Hogarth ◽  
K. Ujiie ◽  
...  

Cytokines increase the expression of the inducible (type II) nitric oxide synthase (NOS) in macrophages, liver, and renal epithelial cells. Previously, we found that cultured rat medullary interstitial cells (RMIC) contain high levels of soluble guanylyl cyclase. To determine whether these cells can also produce NO, we studied the effects of tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) on NO production, NOS II mRNA, and NOS II protein expression. Both TNF-alpha and IFN-gamma, in the presence of a low concentration of the other cytokine, caused dose-dependent increases in NO production. Exposure to TNF-alpha and IFN-gamma stimulated the production of NOS II mRNA, as determined by Northern blotting. Restriction mapping of reverse transcription-polymerase chain reaction products indicated that normal cells contained macrophage NOS II, whereas cytokine-stimulated cells contained primarily vascular smooth muscle NOS II and some macrophage NOS II. The appearance of NOS II protein was demonstrated by Western blotting. RMIC cell guanosine 3',5'-cyclic monophosphate accumulation increased 129-fold in response to the cytokines. NOS inhibitors decreased nitrite production. We conclude that 1) TNF-alpha and IFN-gamma induce the expression of vascular smooth muscle NOS II and production of NO in RMIC, and 2) NO acts as an autocrine activator of the soluble guanylyl cyclase in RMIC.


1995 ◽  
Vol 182 (6) ◽  
pp. 1683-1693 ◽  
Author(s):  
G Melillo ◽  
T Musso ◽  
A Sica ◽  
L S Taylor ◽  
G W Cox ◽  
...  

Picolinic acid, a catabolite of L-tryptophan, activates the transcription of the inducible nitric oxide synthase gene (iNOS) in IFN-gamma-treated murine macrophages. We performed functional studies on the 5' flanking region of the iNOS gene linked to a CAT reporter gene to identify the cis-acting element(s) responsible for the activation of iNOS transcription by picolinic acid. Transient transfection assays showed that the full-length iNOS promoter in the murine macrophage cell line ANA-1 was activated by the synergistic interaction between IFN-gamma and picolinic acid. Deletion or mutation of the iNOS promoter region from -227 to -209, containing a sequence homology to a hypoxia-responsive enhancer (iNOS-HRE), decreased picolinic acid- but not LPS-induced CAT activity by more than 70%. Functional studies using a tk promoter-CAT reporter gene plasmid demonstrated that the iNOS-HRE was sufficient to confer inducibility by picolinic acid but not by IFN-gamma or LPS. Electrophoretic mobility shift assays confirmed that picolinic acid alone induced a specific binding activity to the iNOS-HRE. Furthermore, we found that the iNOS-HRE activity was inducible by hypoxia and that hypoxia in combination with IFN-gamma activated the iNOS promoter in transient transfection assays and induced iNOS transcription and mRNA expression. These data establish that the iNOS-HRE is a novel regulatory element of the iNOS promoter activity in murine macrophages and provide the first evidence that iNOS is a hypoxia-inducible gene.


1997 ◽  
Vol 352 (1359) ◽  
pp. 1355-1359 ◽  
Author(s):  
J. Alexander ◽  
T. M. Scharton-Kersten ◽  
G. Yap ◽  
C. W. Roberts ◽  
F. Y. Liew ◽  
...  

The interaction of protozoan parasites with innate host defences is critical in determining the character of the subsequent infection. The initial steps in the encounter of Toxoplasma gondii with the vertebrate immune system provide a striking example of this important aspect of the host–parasite relationship. In immunocompetent individuals this intracellular protozoan produces an asymptomatic chronic infection as part of its strategy for transmission. Nevertheless, T. gondii is inherently a highly virulent pathogen. The rapid induction by the parasite of a potent cell–mediated immune response that both limits its growth and drives conversion to a dormant cyst stage explains this apparent paradox. Studies with gene–deficient mice have demonstrated the interleukin–12 (IL–12)–dependent production of interferon gamma (IFN–gamma) to be of paramount importance in controlling early parasite growth. However, this seems to be independent of nitric oxide production as mice deficient in inducible nitric oxide synthase (iNOS) and tumour necrosis factor receptor were able to control early growth of T. gondii , although they later succumbed to infection. Nitric oxide does, however, seem to be important in controlling persistent infection; treating chronic infection with iNOS metabolic inhibitors results in disease reactivation. Preliminary evidence implicates neutrophils in effector pathways against this parasite distinct from that described for macrophages. Once initiated, IL–12–dependent IFN–gamma production in synergy with other proinflammatory cytokines can positively feed back on itself to induce ‘cytokine shock’. Regulatory cytokines, particularly IL–10, are essential to down–regulate inflammation and limit host pathology.


Sign in / Sign up

Export Citation Format

Share Document