scholarly journals The distribution of clones of Streptococcus agalactiae (group B streptococci) among herdspersons and dairy cows demonstrates lack of host specificity for some lineages

2019 ◽  
Vol 235 ◽  
pp. 71-79 ◽  
Author(s):  
Uffe B. Skov Sørensen ◽  
Ilka C. Klaas ◽  
Jaap Boes ◽  
Michael Farre
2003 ◽  
Vol 71 (12) ◽  
pp. 6857-6863 ◽  
Author(s):  
Elisabeth E. Adderson ◽  
Shinji Takahashi ◽  
Yan Wang ◽  
Jianling Armstrong ◽  
Dylan V. Miller ◽  
...  

ABSTRACT Group B Streptococcus agalactiae bacteria (group B streptococci [GBS]) are the most common cause of serious bacterial infection in newborn infants. The majority of serotype III-related cases of neonatal disease are caused by a genetically related subgroup of bacteria, restriction fragment digest pattern (RDP) type III-3, suggesting that these strains possess unique genes contributing to virulence. We used genomic subtractive hybridization to identify regions of genomic DNA unique to virulent RDP type III-3 GBS strains. Within one of these III-3-specific regions is a 1,506-bp open reading frame, spb1 (surface protein of group B streptococcus 1). A mutant type III GBS strain lacking Spb1 was constructed in virulent RDP type III-3 strain 874391, and the interactions of the wild-type and spb1 isogenic mutant with a variety of epithelial cells important to GBS colonization and infection were compared. While adherence of the spb1 isogenic mutant to A549 respiratory, C2Bbe1 colonic, and HeLa cervical epithelial cells was slightly lower than that of the 874391 strain, invasion of the Spb1− mutant was significantly reduced with these cell lines compared to what was seen with 874391. The defect in epithelial invasion was corrected by supplying spb1 in trans. These observations suggest that Spb1 contributes to the pathogenesis of neonatal GBS infection by mediating internalization of virulent serotype III GBS and confirm that understanding of the population structure of bacteria may lead to insights into the pathogenesis of human infections.


1996 ◽  
Vol 117 (3) ◽  
pp. 417-422 ◽  
Author(s):  
N. E. Jensen ◽  
F. M. Aarestrup

SummaryRestriction fragment length polymorphism of the gene encoding rRNA (ribotyping) was used in combination with conventional epidemiological markers to study phenotypic variations amongStreptococcus agalactiaeof bovine origin and the possible epidemiological interrelationship between the bovine and human reservoirs ofStreptococcus agalactiae.The bovine material constituted 53 strains (9 antigen combinations) isolated from 11 herds. Herds with a uniform as well as heterogenic antigenic pattern were included. Furthermore, strains isolated in the course of time from the same persistently infected quarters were examined. The human material constituted 16 strains, 4 each of 4 serotypes, isolated from healthy carriers. Finally, nine serotype- and the group reference strains were examined. All strains were serotyped by double diffusion in agarose gel, biotyped (lactose ±), and ribotyped using two restriction enzymes,HindIII andHhaI.All isolates could be typed by ribotyping and seven ribotypes were identified among the reference strains. The restriction enzymes used alone or in combination gave typing results that allowed discrimination between and within serotype. Combined use of serotype,HindIII andHhaI ribotypes produced 11 types among the 16 human strains. Ribotype analysis discriminated between herds infected with the same serotype. Strains of varying antigenic patterns from the same herd had the same ribotype. Phenotypic variations in serotype observed in persistent intramammary infection were not related to genetic changes as monitored by ribotype. Two ribotypes were represented among both bovine and human strains. The discriminating capability of lactose fermentation was of limited value.


2009 ◽  
Vol 9 (1) ◽  
Author(s):  
Nabil Abdullah El Aila ◽  
Inge Tency ◽  
Geert Claeys ◽  
Bart Saerens ◽  
Ellen De Backer ◽  
...  

Microbiology ◽  
1982 ◽  
Vol 128 (6) ◽  
pp. 1381-1384
Author(s):  
G. H. G. Davis ◽  
A. V. Pham ◽  
M. X. Triscott

2011 ◽  
Vol 162 (5) ◽  
pp. 499-505 ◽  
Author(s):  
Nabil Abdullah El Aila ◽  
Inge Tency ◽  
Geert Claeys ◽  
Hans Verstraelen ◽  
Pieter Deschaght ◽  
...  

Author(s):  
Mahdieh Nabavinia ◽  
Mohammad Bagher Khalili ◽  
Maryam Sadeh ◽  
Gilda Eslami ◽  
Mahmood Vakili ◽  
...  

Background and Objectives: Due to the important role of Streptococcus agalactiae, Group B streptococci (GBS), in production of invasive disease in neonates, investigation regarding the pathogenicity and antibiotic resistance factors is necessary in selecting the appropriate therapeutic agents. Beside capsule, the pilus has been currently recognized as an important factor in enhancing the pathogenicity of GBS. Resistance of GBS to selected antibiotics is noticeably increasing which is mainly due to the anomalous use of these drugs for treatment. The aim of this study was to determine the prevalence of pili genes followed by antibiotic susceptibility of GBS, previously serotyped, isolated from pregnant women in the city of Yazd, Iran. Materials and Methods: Fifty seven GBS from pregnant women were subjected to multiplex PCR for determination of PI-1, PI-2a and PI-2b pilus-islands and simultaneously, the phenotype of antibiotic resistance to penicillin, tetracycline, erythromycin, clindamycin, gentamycin and levofloxacin was determined. Antibiotic resistance genes (ermA, ermB, mefA, tetM, int-Tn) were further diagnosed using PCR and multiplex PCR. Results: PI-1+PI-2a with 71.9%; followed by PI-2a (21.1%) and PI-2b (7%) were observed. PI-1+PI-2a in serotype III was (73.2%), serotype II, Ia, Ib and V were 12.2%, 9.8%, 2.4% and 2.4% respectively. GBS penicillin sensitive was 89.5% and 96.5% resistance to tetracycline. The frequency of resistance genes were as follows: tetM (93%), ermA (33.3%), ermB (8.8%), int-Tn (80.7%) and mefA (0). Conclusion: Majority of GBS contained PI-1+PI-2a. Hence presence of this pilus stabilizes the colonization, therefore designing a program for diagnosing and treatment of infected pregnant women seems to be necessary.


Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 810 ◽  
Author(s):  
Virginia Martín ◽  
Nivia Cárdenas ◽  
Sara Ocaña ◽  
María Marín ◽  
Rebeca Arroyo ◽  
...  

Streptococcus agalactiae (Group B Streptococci, GBS) can cause severe neonatal sepsis. The recto-vaginal GBS screening of pregnant women and intrapartum antibiotic prophylaxis (IAP) to positive ones is one of the main preventive options. However, such a strategy has some limitations and there is a need for alternative approaches. Initially, the vaginal microbiota of 30 non-pregnant and 24 pregnant women, including the assessment of GBS colonization, was studied. Among the Lactobacillus isolates, 10 Lactobacillus salivarius strains were selected for further characterization. In vitro characterization revealed that L. salivarius CECT 9145 was the best candidate for GBS eradication. Its efficacy to eradicate GBS from the intestinal and vaginal tracts of pregnant women was evaluated in a pilot trial involving 57 healthy pregnant women. All the volunteers in the probiotic group (n = 25) were GBS-positive and consumed ~9 log10 cfu of L. salivarius CECT 9145 daily from week 26 to week 38. At the end of the trial (week 38), 72% and 68% of the women in this group were GBS-negative in the rectal and vaginal samples, respectively. L. salivarius CECT 9145 seems to be an efficient method to reduce the number of GBS-positive women during pregnancy, decreasing the number of women receiving IAP during delivery.


Sign in / Sign up

Export Citation Format

Share Document