Regulatory mechanism of microRNA-155 in chicken embryo fibroblasts in response to reticuloendotheliosis virus infection

2020 ◽  
Vol 242 ◽  
pp. 108610 ◽  
Author(s):  
Chang Gao ◽  
Shengyuan Dang ◽  
Jie Zhai ◽  
Shimin Zheng
1985 ◽  
Vol 100 (3) ◽  
pp. 692-703 ◽  
Author(s):  
J J Lin ◽  
D M Helfman ◽  
S H Hughes ◽  
C S Chou

Seven polypeptides (a, b, c, 1, 2, 3a, and 3b) have been previously identified as tropomyosin isoforms in chicken embryo fibroblasts (CEF) (Lin, J. J.-C., Matsumura, F., and Yamashiro-Matsumura, S., 1984, J. Cell. Biol., 98:116-127). Spots a and c had identical mobility on two-dimensional gels with the slow-migrating and fast-migrating components, respectively, of chicken gizzard tropomyosin. However, the remaining isoforms of CEF tropomyosin were distinct from chicken skeletal and cardiac tropomyosins on two-dimensional gels. The mixture of CEF tropomyosin has been isolated by the combination of Triton/glycerol extraction of monolayer cells, heat treatment, and ammonium sulfate fractionation. The yield of tropomyosin was estimated to be 1.4% of total CEF proteins. The identical set of tropomyosin isoforms could be found in the antitropomyosin immunoprecipitates after the cell-free translation products of total poly(A)+ RNAs isolated from CEF cells. This suggested that at least seven mRNAs coding for these tropomyosin isoforms existed in the cell. Purified tropomyosins (particularly 1, 2, and 3) showed different actin-binding abilities in the presence of 100 mM KCl and no divalent cation. Under this condition, the binding of tropomyosin 3 (3a + 3b) to actin filaments was significantly weaker than that of tropomyosin 1 or 2. CEF tropomyosin 1, and probably 3, could be cross-linked to form homodimers by treatment with 5,5'-dithiobis-(2-nitrobenzoate), whereas tropomyosin a and c formed a heterodimer. These dimer species may reflect the in vivo assembly of tropomyosin isoforms, since dimer formation occurred not only with purified tropomyosin but also with microfilament-associated tropomyosin. The expression of these tropomyosin isoforms in Rous sarcoma virus-transformed CEF cells has also been investigated. In agreement with the previous report by Hendricks and Weintraub (Proc. Natl. Acad. Sci. USA., 78:5633-5637), we found that major tropomyosin 1 was greatly reduced in transformed cells. We have also found that the relative amounts of tropomyosin 3a and 3b were increased in both the total cell lysate and the microfilament fraction of transformed cells. Because of the different actin-binding properties observed for CEF tropomyosins, changes in the expression of these isoforms may, in part, be responsible for the reduction of actin cables and the alteration of cell shape found in transformed cells.


1991 ◽  
Vol 11 (9) ◽  
pp. 4448-4454
Author(s):  
M K White ◽  
T B Rall ◽  
M J Weber

The increase in glucose transport that occurs when chicken embryo fibroblasts (CEFs) are transformed by src is associated with an increase in the amount of type 1 glucose transporter protein, and we have previously shown that this effect is due to a decrease in the degradation rate of this protein. The rate of CEF type 1 glucose transporter biosynthesis and the level of its mRNA are unaffected by src transformation. To study the molecular basis of this phenomenon, we have been isolating chicken glucose transporter cDNAs by hybridization to a rat type 1 glucose transporter probe at low stringency. Surprisingly, these clones corresponded to a message encoding a protein which has most sequence similarity to the human type 3 glucose transporter and which we refer to as CEF-GT3. CEF-GT3 is clearly distinct from the CEF type 1 transporter that we have previously described. Northern (RNA) analysis of CEF RNA with CEF-GT3 cDNA revealed two messages of 1.7 and 3.3 kb which were both greatly induced by src transformation. When the CEF-GT3 cDNA was expressed in rat fibroblasts, a three-to fourfold enhancement of 2-deoxyglucose uptake was observed, indicating that CEF-GT3 is a functional glucose transporter. Northern analyses using a CEF-GT3 and a rat type 1 probe demonstrated that there is no hybridization between different isoforms but that there is cross-species hybridization between the rat type 1 probe and the chicken homolog. Southern blot analyses confirmed that the chicken genomic type 1 and type 3 transporters are encoded by distinct genes. We conclude that CEFs express two types of transporter, type 1 (which we have previously reported to be regulated posttranslationally by src) and a novel type 3 isoform which, unlike type 1, shows mRNA induction upon src transformation. We conclude that src regulates glucose transport in CEFs simultaneously by two different mechanisms.


Sign in / Sign up

Export Citation Format

Share Document