Efficacy and persistent activity of moxidectin against natural Muellerius capillaris infection in goats and pathological consequences of muelleriosis

2016 ◽  
Vol 218 ◽  
pp. 98-101 ◽  
Author(s):  
Jaroslav Vadlejch ◽  
Pavol Makovický ◽  
Zuzana Čadková ◽  
Iva Langrová
Author(s):  
Xanthippi Konstantoudaki ◽  
Athanasia Papoutsi ◽  
Kleanthi Chalkiadaki ◽  
Panayiota Poirazi ◽  
Kyriaki Sidiropoulou

2008 ◽  
Vol 99 (1) ◽  
pp. 187-199 ◽  
Author(s):  
Tsuyoshi Inoue ◽  
Ben W. Strowbridge

Little is known about the cellular mechanisms that underlie the processing and storage of sensory in the mammalian olfactory system. Here we show that persistent spiking, an activity pattern associated with working memory in other brain regions, can be evoked in the olfactory bulb by stimuli that mimic physiological patterns of synaptic input. We find that brief discharges trigger persistent activity in individual interneurons that receive slow, subthreshold oscillatory input in acute rat olfactory bulb slices. A 2- to 5-Hz oscillatory input, which resembles the synaptic drive that the olfactory bulb receives during sniffing, is required to maintain persistent firing. Persistent activity depends on muscarinic receptor activation and results from interactions between calcium-dependent afterdepolarizations and low-threshold Ca spikes in granule cells. Computer simulations suggest that intrinsically generated persistent activity in granule cells can evoke correlated spiking in reciprocally connected mitral cells. The interaction between the intrinsic currents present in reciprocally connected olfactory bulb neurons constitutes a novel mechanism for synchronized firing in subpopulations of neurons during olfactory processing.


2021 ◽  
Vol 2 (Supplement_1) ◽  
pp. A16-A16
Author(s):  
A Dawson ◽  
J Avraam ◽  
C Nicholas ◽  
A Kay ◽  
J Trinder ◽  
...  

Abstract Rationale Arousal from sleep has been shown to elicit a prolonged increase in genioglossus muscle activity that persists following the return to sleep and may protect against airway collapse. We hypothesised that this increased genioglossal activity following return to sleep after an arousal is due to persistent firing of inspiratory single motor units (SMUs) recruited during the arousal. Methods 34 healthy participants were studied overnight while wearing a nasal mask/pneumotachograph to measure ventilation and with 4 intramuscular genioglossus SMU electrodes. During stable N2 and N3 sleep, auditory tones were played to induce brief (3-15s) AASM arousals. Ventilation and genioglossus SMUs were quantified for 5 breaths before the tone, during the arousal and for 10 breaths after the return to sleep. Results A total of 1089 tones were played and gave rise to 236 SMUs recorded across arousal and the return to sleep in 20 participants (age 23±4.2 years and BMI 22.5±2.2kg/m2). Ventilation was elevated above baseline during arousal and the first post-arousal breath (p<0.001). The peak firing frequency of expiratory and tonic SMUs was unchanged during arousal and return to sleep, whereas inspiratory modulated SMUs were increased during the arousal and for 4 breaths following the return to sleep (p<0.001). Conclusions The prolonged increase in genioglossus activity that occurs on return to sleep after arousal is a result of persistent activity of inspiratory SMUs. Strategies to elevate inspiratory genioglossus SMU activity may be beneficial in preventing/treating obstructive sleep apnea.


2021 ◽  
Vol 15 ◽  
Author(s):  
Julian L. Amengual ◽  
Suliann Ben Hamed

Persistent activity has been observed in the prefrontal cortex (PFC), in particular during the delay periods of visual attention tasks. Classical approaches based on the average activity over multiple trials have revealed that such an activity encodes the information about the attentional instruction provided in such tasks. However, single-trial approaches have shown that activity in this area is rather sparse than persistent and highly heterogeneous not only within the trials but also between the different trials. Thus, this observation raised the question of how persistent the actually persistent attention-related prefrontal activity is and how it contributes to spatial attention. In this paper, we review recent evidence of precisely deconstructing the persistence of the neural activity in the PFC in the context of attention orienting. The inclusion of machine-learning methods for decoding the information reveals that attention orienting is a highly dynamic process, possessing intrinsic oscillatory dynamics working at multiple timescales spanning from milliseconds to minutes. Dimensionality reduction methods further show that this persistent activity dynamically incorporates multiple sources of information. This novel framework reflects a high complexity in the neural representation of the attention-related information in the PFC, and how its computational organization predicts behavior.


2020 ◽  
Vol 57 (4) ◽  
pp. 306-313
Author(s):  
A. Saidi ◽  
R. Mimouni ◽  
F. Hamadi ◽  
W. Oubrou

SummaryProtostrongylids, small nematode lungworms, are an integral part of the wild ruminant helminth community, which can damage animals’ health when they are held in captivity or semi-captive conditions. The Sahelo-Saharan antelope species dorcas gazelle (Gazella dorcas), the scimitar-horned oryx (Oryx dammah), and the addax (Addax nasomacculatus), reintroduced to Souss-Massa National Park in Morocco, could be host to many species of Protostrongylids. This study was conducted from January to July 2015 to identify infecting parasite species, and determine their prevalence and abundance in all three antelope species. A total of 180 individual fecal samples were collected, morphologically examined by the Baermann technique, and molecularly identified by PCR amplification and sequencing of the second internal transcribed spacer region of the rDNA (ITS-2).Two parasite species were found in the three antelope populations: Muellerius capillaris and Neostrongylus linearis. The prevalence scores recorded for M. capillaris were 98.40 % in the addax, 96.70 % in dorcas gazelle, and 28.40 % in the oryx. The prevalence rates of N. linearis were 60 % in the addax, 23.40 % in dorcas gazelle, and 90 % in the oryx. Excreted larvae were quantified by LPG (larvae per gram) counting: for M. capillaris, the LPG mean values were 92.94 in the addax, 133.09 in dorcas gazelle, and 1.48 in the oryx; and for N. linearis, the LPG mean values were 6.02 in the addax, 1.37 in dorcas gazelle, and 32.81 in the oryx. These findings indicate that the three species of antelopes are infected with Muellerius capillaris and Neostrongylus linearis to varying degrees in intensity and prevalence.


Sign in / Sign up

Export Citation Format

Share Document