scholarly journals Functional relationship between the matrix proteins of feline and simian immunodeficiency viruses

Virology ◽  
2004 ◽  
Vol 329 (1) ◽  
pp. 157-167 ◽  
Author(s):  
Mariana L. Manrique ◽  
Silvia A. González ◽  
José L. Affranchino
Author(s):  
Robert Williams ◽  
Che-Hung Lee ◽  
Sara E. Quella ◽  
David M. Harlan ◽  
Yuan-Hsu Kang

Monocyte adherence to endothelial or extracellular matrices plays an important role in triggering monocyte activation in extravascular sites of infection, chronic inflammatory disorders, and tissue damage. Migration of monocytes in the tissues involves the response to a chemoattractant and movement by a series of attachments and detachments to the extracellular matrices which are regulated by expression and distribution of specific receptors for the matrix proteins such as fibronectin (FN). The VSAs (very late antigens or beta integrins), a subfamily of the transmembrane heterodimeric integrin receptors, have been thought to play a major role in monocyte adherence to the extracellular matrices and cells. In this subfamily, VLA-5 and VLA-4 are believed to be the most essential integrins mediating monocyte adherence to FN. In the present report, we have established and compared different procedures for morphological evaluation of the expression and distribution of the FN receptors on human monocytes in order to investigate their response to endotoxin or cytokine stimulation.


1995 ◽  
Vol 42 (2) ◽  
pp. 205-210 ◽  
Author(s):  
P Widłak ◽  
J Rogoliński ◽  
J Rzeszowska-Wolny

Preincubation of rat liver nuclei with copper ions influenced the stability and protein composition of the nuclear matrices isolated by a "high salt" method. Also the specific interaction between matrix proteins and the kappa Ig matrix attachment region of DNA was affected.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Yasmin ◽  
Raya Al Maskari ◽  
Carmel M. McEniery ◽  
Sarah E. Cleary ◽  
Ye Li ◽  
...  

1993 ◽  
Vol 264 (4) ◽  
pp. L401-L405 ◽  
Author(s):  
R. A. Kaslovsky ◽  
L. Lai ◽  
K. Parker ◽  
A. B. Malik

Since polymorphonuclear leukocytes (PMN) rapidly migrate across the endothelial barrier and attach to extracellular matrix components, we tested the hypothesis that adhesion of PMN to matrix proteins can mediate endothelial injury following PMN activation. Studies were made using gelatin- and fibronectin-coated polycarbonate microporous filters (10 microns thick) on which confluent monolayers of bovine pulmonary microvessel endothelial cells were grown. PMN were layered either directly onto endothelial cells (at a ratio of 10:1) (“upright system”) or onto gelatin- and fibronectin-coated filters with the endothelial monolayer grown on the underside of the filter without contact between PMN and endothelial cells (“inverted system”). PMN were activated with phorbol 12-myristate 13-acetate (PMA; 5 x 10(-9) M) in both systems. PMN activation increased endothelial permeability to 125I-labeled albumin in upright as well as inverted systems. Pretreatment of PMN with anti-CD18 monoclonal antibodies IB4 or R15.7, which inhibited PMN adherence to matrix constituents as well as to endothelial cells, prevented the permeability increase in both configurations. This effect of anti-CD18 monoclonal antibodies (mAbs) was not ascribed to a reduction in PMN activation, since PMA-induced superoxide generation was unaffected. We conclude that activation of PMN adherent to extracellular matrix proteins increases endothelial permeability to albumin and that this response is dependent on PMN adhesion to the matrix. The results support the concept that PMN-mediated increase in endothelial permeability is the result of “targeted” release of PMN products independent of whether the PMN are adherent to the extracellular matrix or the endothelium.


2018 ◽  
Vol 27 (148) ◽  
pp. 180018 ◽  
Author(s):  
Magnus Paulsson ◽  
Kristian Riesbeck

Haemophilus influenzae,Moraxella catarrhalisandPseudomonas aeruginosaare common Gram-negative pathogens associated with an array of pulmonary diseases. All three species have multiple adhesins in their outer membrane,i.e.surface structures that confer the ability to bind to surrounding cells, proteins or tissues. This mini-review focuses on proteins with high affinity for the components of the extracellular matrix such as collagen, laminin, fibronectin and vitronectin. Adhesins are not structurally related and may be lipoproteins, transmembrane porins or large protruding trimeric auto-transporters. They enable bacteria to avoid being cleared together with mucus by attaching to patches of exposed extracellular matrix, or indirectly adhering to epithelial cells using matrix proteins as bridging molecules. As more adhesins are being unravelled, it is apparent that bacterial adhesion is a highly conserved mechanism, and that most adhesins target the same regions on the proteins of the extracellular matrix. The surface exposed adhesins are prime targets for new vaccines and the interactions between proteins are often possible to inhibit with interfering molecules,e.g. heparin. In conclusion, this highly interesting research field of microbiology has unravelled host–pathogen interactions with high therapeutic potential.


2003 ◽  
Vol 162 (7) ◽  
pp. 1255-1266 ◽  
Author(s):  
Tong Guo ◽  
Yuriy Y. Kit ◽  
Jean-Marc Nicaud ◽  
Marie-Therese Le Dall ◽  
S. Kelly Sears ◽  
...  

We describe an unusual mechanism for organelle division. In the yeast Yarrowia lipolytica, only mature peroxisomes contain the complete set of matrix proteins. These mature peroxisomes assemble from several immature peroxisomal vesicles in a multistep pathway. The stepwise import of distinct subsets of matrix proteins into different immature intermediates along the pathway causes the redistribution of a peroxisomal protein, acyl-CoA oxidase (Aox), from the matrix to the membrane. A significant redistribution of Aox occurs only in mature peroxisomes. Inside mature peroxisomes, the membrane-bound pool of Aox interacts with Pex16p, a membrane-associated protein that negatively regulates the division of early intermediates in the pathway. This interaction inhibits the negative action of Pex16p, thereby allowing mature peroxisomes to divide.


2003 ◽  
Vol 77 (3) ◽  
pp. 1682-1690 ◽  
Author(s):  
Colin M. Heath ◽  
Miriam Windsor ◽  
Thomas Wileman

ABSTRACT The African swine fever (ASF) virus polyprotein pp220 is processed at Gly-Gly-X sites by a virally encoded SUMO-like protease to produce matrix proteins p150, p37, p34, and p14. Four Gly-Gly-X sites are used to produce the matrix proteins, but the polyprotein contains an additional 15 sites potentially recognized by the protease. This study shows that cleavage occurs at many, if not all, Gly-Gly-X sites, and at steady state, p150 and p34 are minor products of processing. Significantly, only the final structural proteins, p150 and p34, were found in mature virions, suggesting that there is a mechanism for excluding incorrectly processed forms. ASF virus is assembled on the cytoplasmic face of the endoplasmic reticulum, and the distribution of pp220 products between membranes and cytosol was studied. Incorrectly processed forms of p34 were recovered from both the cytosol and membrane fractions. Interestingly, p34 was only detected in the membrane fraction, and of the many processed forms bound to membranes, only p34 was protected from trypsin, suggesting envelopment. The majority of the incorrectly processed forms of p150 were recovered from the cytosol. Again, the correct product of processing, p150, was selectively recruited to membranes. Sucrose density centrifugation showed that membrane-associated forms of p34 and p150 assembled into large structures suggestive of a viral matrix, while cytosolic and/or incorrectly processed forms of pp220 did not. Taken together, these results suggest that association with cellular membranes is important for regulating the correct processing of pp220 and the packaging of matrix proteins into virions.


1980 ◽  
Vol 33 (2) ◽  
pp. 125 ◽  
Author(s):  
JM Gillespie ◽  
MJ Frenkel ◽  
PJ Reis

After sheep were defieeced with mimosine, cyclophosphamide or N-[5-(4-aminophenoxy)pentyl]phthalimide, the first samples of the new growth of wool differed markedly in composition from the pretreatment samples, there being substantial reductions in the high-tyrosine proteins and increases in the high-sulfur proteins. Similar results were obtained with mice dehaired with mimosine and with sheep treated with low levels of mimosine which resulted in weakened wool rather than depilation. The composition of later samples of the regrowth wool showed progressive changes with time. The high-tyrosine proteins tended to approach the pretreatment levels, although this may take up to 12 weeks to occur, whereas the levels of high-sulfur proteins, after the initial increase, often fell below normal. In experiments involving defieecing with cyclophosphamide, the level of the latter proteins was still below normal after 3 months.


1994 ◽  
Vol 44 (1) ◽  
pp. 29-37 ◽  
Author(s):  
A. T. Andrews ◽  
I. Noble ◽  
S. Keeratatipibul ◽  
J. A. Asenjo

1985 ◽  
Vol 12 (3) ◽  
pp. 219 ◽  
Author(s):  
DA Day ◽  
M Neuburger ◽  
R Douce

Mitochondria from pea leaves were purified by centrifugation on a self-generated Percoll gradient which contained a linear gradient of polyvinylpyrrolidone-25 (0-10%, w/v). The chlorophyll content of the purified mitochondria was less than 1 �g per mg protein. All substrates were rapidly oxidized by these mitochondria, the rate of glycine oxidation being between 200 and 300 nmol O2 min-1 mg-1 protein, depending on the age of the leaves used. These rates did not vary significantly over a period of 20 h, provided NAD+ was supplied exogenously, when the mitochondria were stored on ice. Respiratory control, ADP/O ratios and outer membrane integrity (always more than 95%) were also maintained during storage. The phospholipid composition of the membranes from the leaf mitochondria was virtually identical to that of mitochondria from non-photosynthetic tissues although their lipid to protein ratio was slightly lower. The polypeptide pattern of the membranes from green leaf mitochondria and those from etiolated leaves and hypocotyls were also similar, but marked differences were observed between the matrix proteins from the different tissues. In particular, intensely stained bands at 94, 51,41 and 15.5 kDa which were present in the matrix of green leaf mitochondria were missing or present in much smaller quantities in the non-photosynthetic tissues. This difference was correlated with the ability of the mitochondria to oxidize glycine, suggesting that the four polypeptides may be associated with the glycine decarboxylase complex.


Sign in / Sign up

Export Citation Format

Share Document