Effect of single amino acid mutations in the conserved GDNQ motif of L protein of Rinderpest virus on RNA synthesis in vitro and in vivo

2004 ◽  
Vol 99 (2) ◽  
pp. 139-145 ◽  
Author(s):  
Anasuya Chattopadhyay ◽  
Tamal Raha ◽  
M.S Shaila
2009 ◽  
Vol 90 (7) ◽  
pp. 1741-1747 ◽  
Author(s):  
Tahir H. Malik ◽  
Candie Wolbert ◽  
Laura Nerret ◽  
Christian Sauder ◽  
Steven Rubin

It has previously been shown that three amino acid changes, one each in the fusion (F; Ala/Thr-91→Thr), haemagglutinin–neuraminidase (HN; Ser-466→Asn) and polymerase (L; Ile-736→Val) proteins, are associated with attenuation of a neurovirulent clinical isolate of mumps virus (88-1961) following serial passage in vitro. Here, using full-length cDNA plasmid clones and site-directed mutagenesis, it was shown that the single amino acid change in the HN protein and to a lesser extent, the change in the L protein, resulted in neuroattenuation, as assessed in rats. The combination of both amino acid changes caused neuroattenuation of the virus to levels previously reported for the clinical isolate following attenuation in vitro. The amino acid change in the F protein, despite having a dramatic effect on protein function in vitro, was previously shown to not be involved in the observed neuroattenuation, highlighting the importance of conducting confirmatory in vivo studies. This report provides additional supporting evidence for the role of the HN protein as a virulence factor and, as far as is known, is the first report to associate an amino acid change in the L protein with mumps virus neuroattenuation.


1992 ◽  
Vol 12 (5) ◽  
pp. 2372-2382
Author(s):  
K M Arndt ◽  
S L Ricupero ◽  
D M Eisenmann ◽  
F Winston

A mutation in the gene that encodes Saccharomyces cerevisiae TFIID (SPT15), which was isolated in a selection for mutations that alter transcription in vivo, changes a single amino acid in a highly conserved region of the second direct repeat in TFIID. Among eight independent spt15 mutations, seven cause this same amino acid change, Leu-205 to Phe. The mutant TFIID protein (L205F) binds with greater affinity than that of wild-type TFIID to at least two nonconsensus TATA sites in vitro, showing that the mutant protein has altered DNA binding specificity. Site-directed mutations that change Leu-205 to five different amino acids cause five different phenotypes, demonstrating the importance of this amino acid in vivo. Virtually identical phenotypes were observed when the same amino acid changes were made at the analogous position, Leu-114, in the first repeat of TFIID. Analysis of these mutations and additional mutations in the most conserved regions of the repeats, in conjunction with our DNA binding results, suggests that these regions of the repeats play equivalent roles in TFIID function, possibly in TATA box recognition.


2008 ◽  
Vol 83 (4) ◽  
pp. 1930-1940 ◽  
Author(s):  
Jianrong Li ◽  
Amal Rahmeh ◽  
Vesna Brusic ◽  
Sean P. J. Whelan

ABSTRACT The multifunctional large (L) polymerase protein of vesicular stomatitis virus (VSV) contains enzymatic activities essential for RNA synthesis, including mRNA cap addition and polyadenylation. We previously mapped amino acid residues G1154, T1157, H1227, and R1228, present within conserved region V (CRV) of L, as essential for mRNA cap addition. Here we show that alanine substitutions to these residues also affect 3′-end formation. Specifically, the cap-defective polymerases produced truncated transcripts that contained A-rich sequences at their 3′ termini and predominantly terminated within the first 500 nucleotides (nt) of the N gene. To examine how the cap-defective polymerases respond to an authentic VSV termination and reinitiation signal present at each gene junction, we reconstituted RNA synthesis using templates that contained genes inserted (I) at the leader-N gene junction. The I genes ranged in size from 382 to 1,098 nt and were typically transcribed into full-length uncapped transcripts. In addition to lacking a cap structure, the full-length I transcripts synthesized by the cap-defective polymerases lacked an authentic polyadenylate tail and instead contained 0 to 24 A residues. Moreover, the cap-defective polymerases were also unable to copy efficiently the downstream gene. Thus, single amino acid substitutions in CRV of L protein that inhibit cap addition also inhibit polyadenylation and sequential transcription of the genome. In contrast, an amino acid substitution, K1651A, in CRVI of L protein that completely inhibits cap methylation results in the hyperpolyadenylation of mRNA. This work reveals that inhibiting cap addition and cap methylation have opposing effects on polyadenylation during VSV mRNA synthesis and provides evidence in support of a link between correct 5′ cap formation and 3′ polyadenylation.


2020 ◽  
Author(s):  
Nicole M. Collette ◽  
Victoria H.I. Lao ◽  
Dina R. Weilhammer ◽  
Barbara Zingg ◽  
Shoshana D. Cohen ◽  
...  

AbstractThe 2014-2016 Zika virus (ZIKV) epidemic in the Americas resulted in large deposits of next-generation sequencing data from clinical samples. This resource was mined to identify emerging mutations and trends in mutations as the outbreak progressed over time. Information on transmission dynamics, prevalence and persistence of intra-host mutants, and the position of a mutation on a protein were then used to prioritize 544 reported mutations based on their ability to impact ZIKV phenotype. Using this criteria, six mutants (representing naturally occurring mutations) were generated as synthetic infectious clones using a 2015 Puerto Rican epidemic strain PRVABC59 as the parental backbone. The phenotypes of these naturally occurring variants were examined using both cell culture and murine model systems. Mutants had distinct phenotypes, including changes in replication rate, embryo death, and decreased head size. In particular, a NS2B mutant previously detected during in vivo studies in rhesus macaques was found to cause lethal infections in adult mice, abortions in pregnant females, and increased viral genome copies in both brain tissue and blood of female mice. Additionally, mutants with changes in the region of NS3 that interfaces with NS5 during replication displayed reduced replication in the blood of adult mice. This analytical pathway, integrating both bioinformatic and wet lab experiments, provides a foundation for understanding how naturally occurring single mutations affect disease outcome and can be used to predict the of severity of future ZIKV outbreaks.Author summaryTo determine if naturally occurring individual mutations in the Zika virus epidemic genotype effect viral virulence or replication rate in vitro or in vivo, we generated an infectious clone representing the epidemic genotype of stain Puerto Rico, 2015. Using this clone, six mutants were created by changing nucleotides in the genome to cause one to two amino acid substitutions in the encoded proteins. The six mutants we generated represent mutations that differentiated the early epidemic genotype from genotypes that were either ancestral or that occurred later in the epidemic. We assayed each mutant for changes in growth rate, and for virulence in adult mice and pregnant mice. Three of the mutants caused catastrophic embryo effects including increased embryonic death or significant decrease in head diameter. Three other mutants that had mutations in a genome region associated with replication resulted in changes in in vitro and in vivo replication rates. These results illustrate the potential impact of individual mutations in viral phenotype.


2000 ◽  
Vol 44 (8) ◽  
pp. 2100-2108 ◽  
Author(s):  
Michael Korsinczky ◽  
Nanhua Chen ◽  
Barbara Kotecka ◽  
Allan Saul ◽  
Karl Rieckmann ◽  
...  

ABSTRACT Atovaquone is the major active component of the new antimalarial drug Malarone. Considerable evidence suggests that malaria parasites become resistant to atovaquone quickly if atovaquone is used as a sole agent. The mechanism by which the parasite develops resistance to atovaquone is not yet fully understood. Atovaquone has been shown to inhibit the cytochrome bc 1 (CYTbc 1) complex of the electron transport chain of malaria parasites. Here we report point mutations in Plasmodium falciparum CYT b that are associated with atovaquone resistance. Single or double amino acid mutations were detected from parasites that originated from a cloned line and survived various concentrations of atovaquone in vitro. A single amino acid mutation was detected in parasites isolated from a recrudescent patient following atovaquone treatment. These mutations are associated with a 25- to 9,354-fold range reduction in parasite susceptibility to atovaquone. Molecular modeling showed that amino acid mutations associated with atovaquone resistance are clustered around a putative atovaquone-binding site. Mutations in these positions are consistent with a reduced binding affinity of atovaquone for malaria parasite CYTb.


Author(s):  
Chitra Joshi ◽  
Siddharth Gautam

TS14, a Cysticercosis cellulosae derived protein, has been exploited for immunodiagnosis of cysticercosis in humans and pigs. However, the information on structure, function, stability and immunogenicity of TS14 derived from different isolates is primarily lacking. The present study deals with in-silico characterization of six TS14 isolates. High thermostability and an isoelectric point of 9.41 were recorded. Based on N-terminal amino acid residues, high resistance to intracellular proteases with extended in-vivo and in-vitro half-lives was predicted. TS14 is foreseen as a secretory protein with a signal peptide and an extracellular localization. Structural analysis of TS14 exhibited the dominance of helices in the secondary structure (92% coverage) with majority of residues showing high and medium solvent accessibility. High lysine content and presence of multiple nucleotide binding sites in TS14 suggests interaction with RNA/DNA and a role in their metabolism. Immunogenic profiling predicted presence of four distinct B-cell epitopes. Mutational analysis based on the single amino acid substitutions among six TS14 isolates demonstrated minor variations in structural stability; however, all the substitutions were well tolerated. Moreover, all the isolates revealed almost identical immunogenic profile with an equivocal potential to elicit the antibody-mediated immune response.


2009 ◽  
Vol 90 (7) ◽  
pp. 1748-1756 ◽  
Author(s):  
M. Gopinath ◽  
M. S. Shaila

Rinderpest virus (RPV) large (L) protein is an integral part of the ribonucleoprotein (RNP) complex of the virus that is responsible for transcription and replication of the genome. Previously, we have shown that recombinant L protein coexpressed along with P protein (as the L–P complex) catalyses the synthesis of all viral mRNAs in vitro and the abundance of mRNAs follows a gradient of polarity, similar to the occurrence in vivo. In the present work, we demonstrate that the viral mRNAs synthesized in vitro by the recombinant L or purified RNP are capped and methylated at the N7 guanine position. RNP from the purified virions, as well as recombinant L protein, shows RNA triphosphatase (RTPase) and guanylyl transferase (GT) activities. L protein present in the RNP complex catalyses the removal of γ-phosphate from triphosphate-ended 25 nt RNA generated in vitro representing the viral N-terminal mRNA 5′ sequence. The L protein forms a covalent enzyme–guanylate intermediate with the GMP moiety of GTP, whose formation is inhibited by the addition of pyrophosphate; thus, it exhibits characteristics of cellular GTs. The covalent bond between the enzyme and nucleotide is acid labile and alkali stable, indicating the presence of phosphoamide linkage. The C-terminal region (aa 1717–2183) of RPV L protein alone exhibits the first step of GT activity needed to form a covalent complex with GMP, though it lacks the ability to transfer GMP to substrate RNA. Here, we describe the biochemical characterization of the newly found RTPase/GT activity of L protein.


2015 ◽  
Vol 89 (11) ◽  
pp. 6126-6130 ◽  
Author(s):  
Yuki Takamatsu ◽  
Kouichi Morita ◽  
Daisuke Hayasaka

We identified a unique amino acid of NS2A113, phenylalanine, that affects the efficient propagation of two Japanese encephalitis virus strains, JaTH160 and JaOArS982, in neuroblastoma Neuro-2a cells but not in cell lines of extraneural origin. This amino acid did not affect viral loads in the brain or survival curves in mice. These findings suggest that virus propagationin vitromay not reflect the level of virus neuroinvasivenessin vivo.


2020 ◽  
Author(s):  
Scott McComb ◽  
Tina Nguyen ◽  
Kevin A. Henry ◽  
Darin Bloemberg ◽  
Susanne Maclean ◽  
...  

AbstractBackgroundChimeric antigen receptor (CAR) technology has revolutionized the treatment of B-cell malignancies and steady progress is being made towards CAR-immunotherapies for solid tumours. In the context of CARs targeting antigens which are commonly overexpressed in cancer but also expressed at lower levels in normal tissues, such as epidermal growth factor family receptors EGFR or HER2, it is imperative that any targeting strategy consider the potential for on-target off-tumour toxicity. Molecular optimization of the various protein domains of CARs can be used to increase the tumour selectivity.MethodHerein, we utilize high-throughput CAR screening to identify a novel camelid single-domain antibody CAR (sdCAR) targeting human epidermal growth factor (EGFR) with high EGFR-specific activity. To further optimize the target selectivity of this EGFR-sdCAR, we performed progressive N-terminal single amino acid truncations of an extended human CD8 hinge domain [(G4S)3GG-45CD8h] to improve selectivity for EGFR-overexpressing cells. We also make direct comparison of varying hinge domains in scFv-based CARs targeting EGFR-family tumour associated antigens EGFRvIII and HER2.ResultsThrough comparison of various hinge-truncated scFv- and sdAb-based CARs, we show that the CAR hinge/spacer domain plays varying roles in modifying CAR signaling depending upon target epitope location. For membrane-proximal epitopes, hinge truncation by even a single amino acid resulted in fine control of CAR signaling strength. Hinge-modified CARs showed consistent and predictable signaling in Jurkat-CAR cells and primary human CAR-T cells in vitro and in vivo.ConclusionsOverall, these results indicate that membrane-proximal epitope targeting CARs can be optimized through hinge length tuning for improved target selectivity and therapeutic function. Graphical Abstract


Sign in / Sign up

Export Citation Format

Share Document