Segment specific inverted repeat sequences in bluetongue virus mRNA are required for interaction with the virus non structural protein NS2

2004 ◽  
Vol 105 (1) ◽  
pp. 1-9 ◽  
Author(s):  
W. Markotter ◽  
J. Theron ◽  
L.H. Nel
Genetics ◽  
2002 ◽  
Vol 161 (3) ◽  
pp. 1065-1075
Author(s):  
David K Butler ◽  
David Gillespie ◽  
Brandi Steele

Abstract Large DNA palindromes form sporadically in many eukaryotic and prokaryotic genomes and are often associated with amplified genes. The presence of a short inverted repeat sequence near a DNA double-strand break has been implicated in the formation of large palindromes in a variety of organisms. Previously we have established that in Saccharomyces cerevisae a linear DNA palindrome is efficiently formed from a single-copy circular plasmid when a DNA double-strand break is introduced next to a short inverted repeat sequence. In this study we address whether the linear palindromes form by an intermolecular reaction (that is, a reaction between two identical fragments in a head-to-head arrangement) or by an unusual intramolecular reaction, as it apparently does in other examples of palindrome formation. Our evidence supports a model in which palindromes are primarily formed by an intermolecular reaction involving homologous recombination of short inverted repeat sequences. We have also extended our investigation into the requirement for DNA double-strand break repair genes in palindrome formation. We have found that a deletion of the RAD52 gene significantly reduces palindrome formation by intermolecular recombination and that deletions of two other genes in the RAD52-epistasis group (RAD51 and MRE11) have little or no effect on palindrome formation. In addition, palindrome formation is dramatically reduced by a deletion of the nucleotide excision repair gene RAD1.


2021 ◽  
Vol 254 ◽  
pp. 108986
Author(s):  
Zhuoran Li ◽  
Danfeng Lu ◽  
Heng Yang ◽  
Zhuoyue Li ◽  
Pei Zhu ◽  
...  

1985 ◽  
Vol 9 (3) ◽  
pp. 233-238 ◽  
Author(s):  
Jane Aldrich ◽  
Barry Cherney ◽  
Ellis Merlin ◽  
Charlotte Williams ◽  
Laurens Mets

2003 ◽  
Vol 185 (16) ◽  
pp. 4997-5002 ◽  
Author(s):  
Swaine L. Chen ◽  
Lucy Shapiro

ABSTRACT A systematic search for motifs associated with CcrM DNA methylation sites revealed four long (>100-bp) motifs (CIR sequences) present in up to 21 copies in Caulobacter crescentus. The CIR1 and CIR2 motifs exhibit a conserved inverted repeat organization, with a CcrM site in the center of one of the repeats.


2005 ◽  
Vol 25 (23) ◽  
pp. 10507-10515 ◽  
Author(s):  
Michelle L. Ebbs ◽  
Lisa Bartee ◽  
Judith Bender

ABSTRACT Transcribed inverted repeats are potent triggers for RNA interference and RNA-directed DNA methylation in plants through the production of double-stranded RNA (dsRNA). For example, a transcribed inverted repeat of endogenous genes in Arabidopsis thaliana, PAI1-PAI4, guides methylation of itself as well as two unlinked duplicated PAI genes, PAI2 and PAI3. In previous work, we found that mutations in the SUVH4/KYP histone H3 lysine 9 (H3 K9) methyltransferase cause a loss of DNA methylation on PAI2 and PAI3, but not on the inverted repeat. Here we use chromatin immunoprecipitation analysis to show that the transcribed inverted repeat carries H3 K9 methylation, which is maintained even in an suvh4 mutant. PAI1-PAI4 H3 K9 methylation and DNA methylation are also maintained in an suvh6 mutant, which is defective for a gene closely related to SUVH4. However, both epigenetic modifications are reduced at this locus in an suvh4 suvh6 double mutant. In contrast, SUVH6 does not play a significant role in maintenance of H3 K9 or DNA methylation on PAI2, transposon sequences, or centromere repeat sequences. Thus, SUVH6 is preferentially active at a dsRNA source locus versus targets for RNA-directed chromatin modifications.


Sign in / Sign up

Export Citation Format

Share Document